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Levy random walks with fluctuating step number and multiscale behavior
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Random walks with step number fluctuations are examineddimensions for when step lengths compris-
ing the walk are governed by stable distributions, or by random variables having power-law tails. When the
number of steps taken in the walk is large and uncorrelated, the conditions of\uireGinedenko generaliza-
tion of the central limit theorem obtain. When the number of steps is correlated, infinitely divisible limiting
distributions result that can have \ielike behavior in their tails but can exhibit a different power law at small
scales. For the special case of individual steps in the walk being Gaussian distributed, the infinitely divisible
class ofK distributions result. The convergence to limiting distributions is investigated and shown to be
ultraslow. Random walks formed from a finite number of steps modify the behavior and naturally produce an
inner scale. The single class of distributions derived have as special Kadisgibutions, stable distributions,
distributions with power-law tails, and those characteristic of high and low frequency cascades. The results are
compared with cellular automata simulations that are claimed to be paradigmatic of self-organized critical
systems[S1063-651X99)11511-3

PACS numbes): 05.20-y, 05.40.Fb, 05.45.Df, 66.10.Cb

[. INTRODUCTION characteristic functio©(u), which in its most general form
may be written as:
Multidisciplinary interest in self-organized critic660OQ0
stated 1] continues to burgeofsee, e.g., Ref2]). The con- InC(u)=—|u|"(1+iBw(y,u)),
cept of SOC refers to the spontaneous emergence of tempo-
ral and spatial scale invariance in nonequilibrium systemswhere the characteristic index0y<2 governs the form of
Consideration of the non-Gaussian stochastic processes tHa€ tail of the distribution, the index 1=p<1 determines
are capable of describing SOC states is an important allie® symmetry properties of the distribution, aady,u)
topic. A random process that has become a topical candidate S9n®)tan(y=/2) if y#1 and (24r)In |ulif y=1. The prob-
is that described by the stabléeclass[3], whose distri- gblllty_densny function(PDF) is obtained through Fourier
butions possess power-law tails and whose integral momen{8Version ofC(u):
typically diverge. Examples of behavior that are claimed to 1 (=
be relevant to the physical sciences include transport of mat- p(X)= _f C(u)exp(iux)du.
ter and the concomitant emission of radiation in astrophysi- 2m
cal accretion disc systenigl], the Earth’s magnetosphere
during geomagnetic substornfi§], transport regimes near If B>0, the distribution is defined for positive values »f
the edge regions of magnetically confined plasniék the converse is true fg8<<0, andB=0 describes symmetric
Taylor-Couette flow[7], the scattering of radiation by ran- d|str|but!ons. Of these. latter types, well-known clqsed 'form
dom phase screens and rough surfd€gsand particlg9,10] ~ €xPressions fop(x) exist for the casey=2 (Gaussian dis-
and energy[11] transport within piles of granular material. tribution and y=1 (Cauchy distribution However, other
The “sandpile” paradigm has since become a canonical eXl_ess well documented ana'lytlcal fqrms exist fqr speua.l cases
emplar of SOC. Biological behaviors include those cited in[l7:| a”g‘ are worthy o_f re|_ntr_odu_cmg t.o the literature; e.g.,
Ref. [12], together with the errant feeding patterns adopte(JOr y=3, the symmetric distribution is:
by albatrosse§l13]. Evidence also gxists to suggest that the 3 |12 > 4
price of equities can be subject to\elike fluctuations on p(x)= (_2> exp{ - _2) Wi/, 1/€<_2
an intraday basigl4], and that the economic growth of many mX 21X 27X
industrialized nations is similarly non-Gaussian over consid- . . .
erably longer epochgl5]. This list is by no means exhaus- Whlere Wap(X) is the Whittaker function(18], and for y
tive or entirely representative, but does serve to illustrate the 2, € density is expressible in terms of the Fresnel inte-
diversity of systems that can be described by scale-invariarfira's €(x), andS(x) [18]:
random processes. The manifold occurrences ofytlike
processes in nature has prompted workers to segk an unde&x): i[cos{ 1/4x)(1—2C(&))+sin(1/4x) (1—25(€))],
lying cause for their prevalence and an information theory 2x¢
based approach has predicted distributions whose asymptotic
behavior matches with a’\g distribution[16]. with £€=1/(27x)Y?. Closed form expressions can also be
The class of Ley distributions is defined through their obtained whernB=1, in which casey=1/2 yields

—o
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special cases embracing distributions, Ley distributions,
), x>0, distributions possessing power-law tails, and those character-
istic of high- and low-frequency cascades. Each of these re-

gimes will be explored.
The paper is organized as follows. Section Il considers the
1/ 2 \32 4 [ 2\12 statistics of random walks having step lengths governed by
(3—7@> 13 3—7,21(&) , x>0, st_able distributions, or by d|str|but|on§ possessing .po.vver—law

tails for when the number of steps in the walk is itself a

with K,(x) a modified Bessel functiofL8]. All these distri- r@ndom variable. Particular attention is paid to negative-
bution; have an asymptotic form for largehat is a power binomial number fluctuations that can account for correla-

law with p(x)~x"1"7 to leading order. The epithet Elr?n?j'oi %u?terlng n thb? r_lun:jbfer of ﬁteptsé Limiting forbms of
“stable” refers to the property that the distributions are in- € distributions are obtained for when tageragenumber

variant under convolution with themselves, revealing theirof steps in the wallN—c, and solutions in terms of tabu-

importance to random walks, for M Lévy distributed ran- lated functions are obtained for special cases. The general
dom variables are added the distribution of the resultant i§orm that these distributions adopt at small- and large-scale
also a E@ly distribution. This illustrates that if the distribu- SIZ€S IS studied. Section Il considers how these distributions

tion of a physical property is stable, the statistics of thatare modified for when the random walks comprisénéte
property will be persistent. average number of steps and the convergence of these distri-
The Tsallis entropylg] isa genera"zation of the familiar butions to their |Im|t|ng forms. Section IV discusses ways of
Maxwell-Boltzmann entropy, or Shannon informatimo], Characterizing differences between these distributions and
and is related to the information dimension that is used exLevy distributions using fractional moments. Section V high-
tensively to describe multifractal structures such as those rdights the significance of the various parameter regimes that
sulting from diffusion limited aggregation, for exampjz1]. ~ describe these distributions, and discusses their relationship
It is parametrized through a real numbgr whose value With multicascade behavior and self-organized critical sys-
places weight upon the probability of occurrence of small- ot€ms. Section VI summarizes results and draws conclusions.
large-scale events depending upon whethyés greater or Many of the technical details are assigned to appendices.
less than unity. The Tsallis entropy provides a formalism that\Ppendix A generalizes the results in REE6] by obtaining
allows generalization of most of the principal results of ther-the distribution of ann-dimensional random variable
modynamics and statistical physics, viz. the Boltzma&hn through variation of the Tsallis entropy subject to constrain-
theorem[22], the Onsager reciprocity theorefi23], the ing the renormalizedth moment, where may be fractional
fluctuation-dissipation theorefi24] and the concavity of the [29]. This generalization extends the parameter space in
entropy forq>0 [25]. However, there is, apparently, no ba- Which random processes that are asymptotic twylLgro-
sic equation akin to Liouville’s theorem from which it can be cesses can occur. Other details pertaining to the analysis of
obtained. Varying the Tsallis entropy subject to imposingthe grand canonical ensemble are assigned to other appendi-
two constraints, that of unit normalization and tfsaitably ~ C€S.
defined variance[16], obtains distributions that can possess
p_ower-law tails_ depending upon the valuecpﬂ'h_e cal_cula— Il RANDOM WALKS WITH FLUCTUATING
tion descrlbed in Ref.16] determines the canonical distribu- STEP NUMBER
tion function.
The principal purpose of this paper is to consider the This section derives the probability density function
grand canonical ensemble through determining the distribudPDF for the resultant of a random variabkein n dimen-
tion for the resultant of am-dimensional random walk for sions. Herex is ann vector of distance = |x| from the origin
when the steps comprising the walk fluctuate in number anthaving the remaining— 1 polar components distributed uni-
when the length of each step is governed by a stable distrformly over the surface of a unit hypersphere. The PDF for
bution, or by distributions that are asymptotic to stable disthe resultant of a coherent addition Mfsuch random vari-
tributions. The motivation for such a development isables,
prompted by past analyses of random walks with fluctuating
step number which have proved to be an effective tool for N
studying the clutter in coherent optical and microwave re- X=E X,
mote sensing systen{R6], for example. These provide a =1
graphic illustration of the failure of the central limit theorem

of classical statistic27], and a tangible method for produc- js facilitated through working with the characteristic function
ing non-Gaussian statistics through a physical model. An exof the random variables When each of the; is statistically
ample that can be derived in this fashion is kéistribution  similar and independent, the characteristic functiorx dé

[28], and it will be shown how this results as a limiting the N-fold product of the characteristic functions for the
special case of a vy random walk with a fluctuating num- gg that

ber of steps. Step number fluctuations introduce correlations

into the random walk, with fluctuations on short scales
modulated by larger scale structures. These correlations lead

to a class of infinitely divisible limiting distributions involv-

ing two parameters. These distributions are shown to haveshere

1 1
p(x): —mex - 5

and y=1/3 gives

p(x)

v

Cn(u)=(C(u)™,
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; (277-)”/2 - n/2 — L n/2 * n/2
C(uy=(exp—iu-x))=—m=r | X"P(X)Inp-1(xu)dx, pn(X) = X u™J - 1(xu)
u 0 r'(ni2) 0

.Y

X 1+g(1—exp(—Au7))) du. 4

with J,(x) a Bessel function of the first kinfL8], u=|ul.
The PDF ofx then follows by Fourier inversion of Eq1l),

Rescaling the characteristic function through the transforma-

1 . tion u— u/NY” and then Iettingqﬂoo, one obtains the limit
Pn(x)= (2w)nj exp(ix- u)Cy(u)du, 2) distribution for pyn(X):

where the subscripil has been introduced to denote a ran- _ Loz w2 [ 5 e L

dom walk comprisingN steps. The length of each step in the Pex(x) = I'(n/2) X fo U -1 (xU)(1+ AU )~ du.

random walk is governed by a i Qistribution, or one (5)

whose properties are asymptotic to avieistribution, as

discussed in Appendix A. In these circumstances the charage should be stressed that this result is valid if the individual

teristic function may be taken to have the form steps in the walk are drawn from the class of stable distribu-
tions or indeed from those described by equations appearing

Cy(u)=exp(—Alu|?), in Appendix A which are asymptotic to stable distributions.

Note that the further transformations— (1/A)Y?u, fol-

where 0< y<2. lowed byx— (A)Y7x, yield the compact result for the scaled

To treat the grand canonical ensemble requires consideDF:
ation of a random walk whose individual steps are described

by stable distributions but where the number of steps in the 21~z P B

walk fluctuate. Suppose that the discrete random varible ~ P=(X)= T(n2) X fo U™ Jpp- 1 (XU)(1+u? )~ “du.
has probability distribution functioP(N). The characteris- (6)
tic function that results from averaging over all realizations

of N is

While it is not possible to evaluate Eqg)—(6) for arbitrary
values ofy and«, some special cases that can be determined
— = N exactly are worthy of mention.
Cr(u) EN: PN)(C(u))™. When a—« in Eq. (6), the characteristic function
—exp(—u”), which retrieves the Ly distribution. Hence

To enable further progress requires a model for the numbeflo.r Poisson number fluctuations, theweGnedenko gener-

fluctuations. Taking®(N) to be the negative binomial distri- allzathn [3?. of thehcentral limit thgoremlapplldes. I’I’le
bution accounts for clustering in the number of steps and ignda Is ar itrary, then Eq(6) can be evaluated exactly to
the steady state process that describes a birth—deatf?ptaln
immigration proces$28,30,3]. In this case,

2(11/2 a,l/ZX n/2+a—1
( ) Kaenil @), (7)

_ PO)= T i) | 2
(N/a)N

(1+N/a)N+e’

N+a—1
N

P(N)= whereK ,(x) is a modified Bessel functiofil8] from which

the eponymous distribution derives its name. Rhdistribu-

. tion does not possess a power-law tail, rather, Xerl,
where N is the mean of the distribution and>0 is the it is asymptotic to thd distribution with p(x)~x("~3)/2+«
cluster parameter. The cluster parameter is related to th&exp(—x). All its moments exist and are in excess of the
variance of the negative binomial distribution throughequivalent order moments of a Gaussian distribution. Ex-
var(N)/N?=1/a, which is the ratio of immigration to birth pressions for Egs(5) and (6) in closed form or involving
rate in the birth-death-immigration procef28]. When o tabulated functions cannot be found for arbitrary valueg of
=1 the negative binomial distribution is the Bose-Einstein orand y, nevertheless, the behavior for both large and small
geometric distribution, and accounts for thermal numbenalues ofx can be found. Whew>1 the form of Eq.(6) is
fluctuations. Whernw— it is the Poisson distribution, de- governed by the behavior of the characteristic function near
scribing uncorrelated steps. Using this model gives the avett=0. This behavior is influenced by the index which

aged characteristic function to be stems from the [ey-like properties rather thaa which af-
fects the clustering of steps in the walk. In Appendix B it is
— a shown that to leading order the tails of the distribution adopt
Catu)=| 1+ N (1 expr - Aun) 3 theform
N P ’

227" (n+y) (1+ yl2)sin(myl2)
. Po(X) ~ x 177, (8
whereupon the PDF is L(n/2)T (12T ((1+n+y)/2)
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i.e., a power law with exactly the same index as aye the random variable possesses an inner scale. Conversely,
distribution with indexy. Thus the dimension in which the if ay<1, p(x)~x%*"1 is singular (but integrablg at the
random walk takes place does not alter the form of the tail®rigin, and clearly has a different power law from that ex-
of the distribution, providing the random variables are iso-hibited by the tail. The special casey=1 divides the
tropic. behavior, but also is singular at the origin whes 1 with

New behavior emerges wheric1. Here the form of the p(x)~—2a*/ 7 In(x) and is constant for higher dimensions.
distribution depends upon the size afy compared with  Specifically when x<1 the limit distribution has the
unity. If ay>1 the value ofp(x) is finite at the origin, so forms

( 21T ((n— ay)/2)a”
ay—1
T T (ay) < Osar<l
r((n—1)/2)a®
Pe(X) ~ § W’Z_' ay=1n>1
2172\ 20 (n/y)T (a—nly)a™” .
L \T(n/2) VT (a) x5 ay=L

Distribution (6) can be conveniently characterized using theWhenN statistically identical random variables governed by

ratio of cumulatives these distributions are added and the mBanc, singular
behavior at the origin is obtained éfy<1. The anticipated

flpw(x)dx behavior for finite values dfl is for the removal of this weak
0 singularity at the origin, but that a vestige of the inner

—a

du

where scalingsi— (NA)~Y7u, followed by x— (NA)Yx
have been used. Asymptotic analysis of E9).reveals that
1the tail of the distribution is unchanged by the introduction

1T x>l

r=-— : power-law behavior be retained, and this is indeed the case.

J P..(Xx)dx This analysis also informs the important question of the rate
L of convergence to the limit distribution, which will be seen

. . o ... to be ultraslow.

If ris less than unity, the distribution has greater weight in = 11,6 analysis in this section will be illustrated for a ran-

?rﬁsti:leglsi?et?seu;;%n:(’) cLhe?rtiﬁgvperzggebse;;g?:et?cj)? gitiilbuti dom walk in one dimension, in which case the PDF for finite

(6) shown in Fig. 1, which is parametrized in terms of the%T’ given by Eq.(4), Is.

two parametersr>0 and O< y=<2; distributions for a one- 2 (e N( u?

dimensional random walk are iIIustfated. The vertical dotted py(x) = _J cogxu)| 1+ — 1—eXF( — :)

line shows the locus af=1 for the Levy distribution, which ™ J0 a N

occurs aty=1; the region to the left of this linéi.e., y (9)

<1) corresponds to<1. The solid line is the locus aof

=1 for distributions(6), which can be approximated hy

=3/(1—vy)—2. The region to the left of this curve has

<1, and corresponds to where the cumulative probability of” = " —

the tail is greater than that of the front, the converse beingf finite N, so that

true to the right of the curve. The line for thé\r;edist_ribu— B 2T (1+ y)sin(7y/2)

tion is an asymptote to this curve when—o, and it has pn(X) ~ X

already been noted that Poisson number fluctuations produce ™

a Levy distribution in this limit. The chain curve shows the which is Eq.(8) with n= 1. The behavior at other values xf

locus ay=1, above this the PDF has an inner-scale and @an be found by rewriting the characteristic function appear-

power-law tail, below the line it has power laws both in theing in Eq. (9) using the integral definition of thE function

tail and small values ok. Section Il discusses how these [18] in order to remove the algebraic denominator. This en-

distributions are modified by finitél and the manner in ables the PDF to be expressed as the double integral

which the distributions converge to the limiting case.

_ 0= ——— [ “ater texp—v
lll. DISTRIBUTIONS WITH FINITE N AND ml'(a) Jo
CONVERGENCE TO THE LIMIT B
The analysis of Sec Il is now extended to account for a ><exp(—Nt/a)J1) du

finite mean number of steps in the random walk. As before,

the distribution that governhl is negative binomial, with a Nt u?
cluster parametes. Recall that a Ley distribution with in- xexpl—exp — —| Jcoqux).
dex vy has a power-law tail and is finite for small valuesxof @ N
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FIG. 1. A phase space of the
limit distribution parametrized in
terms of the Lgy index y and the
cluster parametera. The solid
curve is the locus on which the ra-
tio of cumulantsr=1. Distribu-
tions in regions to the left of this
line have greater weight in the
tail, with the front of the distribu-
tion having greater weight to the
right of the curve. The vertical

~

~

line is the locus for the Lwy dis-
S~

tribution, which occurs aty=1
and is independent ofx. The
chain line is the locusay=1,
above which the distributions
have an inner scale and a power-
law tail. Below this curve, distri-
butions possess two power laws.

Two scales

.25

The difficulty of evaluating the “exponential of an exponen- ture can be discerned by examination of particular cases.
tial” can be surmounted with the aid of the approximation Selectingy=1 means the underlying distribution governing

[33] step lengths is Cauchy, and enables the integral overbe
performed:

Nt

—ex

o

_ “__y) ~1+ (exp(Nt/a)—1)

N
X exp( - ) ,
which for largeN reduces to the conventional steepest de
scent approximation, and for sufficiently small valuesia$

correct for arbitrary values dil. Using this approximation
evaluates the PDF as

& S(X)=28(x)(1+Nla)~ 2 fmd a
Pn(X) =28(X)(1+N/a) +m . tt*exp—t)

2 -1
X ( ) +x2| .
Appendix C1 shows how the integral appearing in Ed)

can be decomposed into terms that describe the behavior at
small and large values of viz:

tu” 1t

a(1—exp —Nt/@))

— (11
a(l—exp(—Nt/a))

PN(X) = Prail( X) + Prront( X)

NO)=2(1+N/a)” *8(x)+ 2 jwdtt“’l S — dett“exr(—t)
P “ 7T(a) Jo 7T (1+a)x Jo
% 2 P _
><exp(—t)(l—exp(—ﬁt/a))fO ducogux) T () J; dtt*”?(1—exp(— Nt/a))? exp(—1)
2H(X—1N)y(1+a,x)  2a
tu? _ -
XeXF{— e ) (10) T (1+ a)x2 WF(a)[F(a 1x)
a(l—exp(—Nt/a))

-2

The & function term represents the finite probability for there
being zero steps in the random walk and hence remaining at

N N
1+ — I'Ne—1,|1+—]Xx
o 03
the origin. This term is comparatively large for smill and
decreases to zero &—o. The integral term in the above

2N| 2N
] Y PR
represents the distributed part of the PDF upon which atten-

tion is now focussed. Although the integral cannot be evaluwhere y(a,b) andI'(a,b) are the incompletd” functions
ated analytically for arbitrary values af its general struc- [34], andH(x) the Heaviside unit-step functidB5]. Integral

+
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pr() 250 FIG. 2. lllustrating on log-log
0.1 0.1 plots the PDF’s that feature in the
........ Poo(®) text. (@) shows the limit distribu-
o1 0 01 tion corresponding to N—o
: - asymplotes ’ (dashed ling which is contrasted
with the distribution for N=5
. 0.001 (full line) when y=1 and «
0.01 too =0.3. Also shown are the asymp-
x .
totes for small and large dimen-
0.001 0.01 0.1 1 10 sionless values of. The thorn on
100 . .
- ' ' the x axis denotes the position at
(b) : ; .
which the inner solution resolves
10 ] 10 the singularity that is an inherent
feature of the limit distribution.
(b) shows how the distribution for
1 1 N=5 can be constructed from the
- terms pfront(x) and ptail(x)x and
X
PR (%) ps(x) their sum fory=1 anda=0.3.
0.1 0.1
"""" P from (X)+Prair(x)
— pﬁ'om(x)
0.1} () 0.01
. 0.001
0.01 100

(11) possesses inner, intermediate, and large-scale behavigive an intermediate behavior that matches onto the inner

The inner scale is defined for< 1/N, throughout which the ~Power law of the limit distribution.
PDF is approximately constant. For those values wfithin Another special case for which the integral oueappear-

the intermediate region Nk x<1 the PDF matches onto ing in Eq.(10) can be performed is for Gaussian distributed

the small-scale asymptote of the limit distribution, so thatSteP lengths, i.e., foy=2, in which case

p(x)~x*"1. The outer scale fok>1 has the usual Lwy-
like tail behavior withp(x) ~x 2.

The distribution, the various contributions for the approxi-
mation to it, and the corresponding asymptotes and scale

regions are illustrated in Fig. 2. Figuréa® shows the limit

( r{ Wt) )3/2

X|1l—exp — —

distribution and the distribution for whel=5 correspond- @

ing to the dashed and full curves, respectively: in both cases —

a=0.3 andy=1. The asymptotes derived in Sec. Il are also Xexp( —a(l—exp— Nt/“))xz)

shown. The distributions have identical tails, but exhibit dif- 4t '

ferent behavior at small values »f The limit distribution is -

singular at the origin, but this singularity is resolved by theand, lettingN—, one obtains exactly the limiting distri-
finite N distribution with inner scale at 1/N, the position of ~ bution

which is marked by the thorn on the axis. Figure 2b)
compares approximatiof2) with a numerical solution of
Eq. (12) for when N=5. The full curve gives the actual
distribution, and the dot-dashed line denotes the contribution

1/2 -
Pr(X)~ - dtt* 32exp —t)
VT T ) Jo "

o2 - . a2
pm(X)ZmJ'O dtt® exp(—t)ex —T

: ; . . ) 2(,1’1/2 X a—1/2
Pront(X), Which provides the inner- and intermediate-scale — _) K (oY
behavior but which is negligible in the tail. The dot-dot 7T (a) | 2 a2l )

dashed curve depicts the contributigr,(x), which de-

scribes the tail of the distribution, and has a cutoff at thewhich may be compared with E¢) on settingn=1. Recall
inner scale. The dotted curve gives the sumg(x) that theK density does not have a power-law tail, but can

+ pront(X). Just beyond the cutoff, both terms contribute tohave an inner power-law i <<1/2. FiniteN only affects the
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0.00001 0.0001 0.001 0.01 0.1
1000 i . i . 1000

FIG. 3. Contrasting the way in
which the distribution changes
with N when y=% and a=1%.
The limit distribution (N— o, full
curve is shown together with dis-
tributions for N=100 and 10.
Thorns on thex axis mark the po-
sition of the inner-scale region,
1 the black symbol is forN=10,
and the open symbol fdx= 100.
All quantities are dimensionless.

100 | 1100

py(x) 104 g 10

A . .
0.001 0.01 0.1 1

0.0001
X

inner-scale region, and once again removes the weak singwhich is the probability ofreturning to the origin (the §
larity. In Appendk C 2 the inner scale is shown to occur function term is the probability aemainingat the origin, is

whenx2<4/N, within which the PDF is approximately con- indicative of the rate of convergence to the limit distribution.

stant. The behavior ofp(0) for W/a_<1 is obtained by approxi-
In general the inner scale occurs when mating (1— exp(—Nt/a)) with Nt/«, whereupon
x~y(N)~ 17, 13 B 2T (1+1ly) —
Y w9 pR0)= L (), a5

as illustrated in Fig. 3, which contrasts the limit distribution,

shown by the full curve, with the distributions fb\=10 and  The behavior ofpy(0) in the other limitN/a>1 is slightly

100, shown by the dot-dashed and dotted curves, respemore involved, and the detail for obtaining the result

tively. The values of the indices are=2% anda=3. It can

be seen that the inner scale, at locations denoted by thorns on -~ 2yI'(2+1ly)a”

the x axis, decreases with increasihgin accord with Eq. Pr(0)= 7l (a)(1+a)(1—ay)

(13). Beyond the inner-scale region the distribution matches

onto the inner power law of the limit distribution with is givenin Appendix D. Note that the power-law dependence

p(x)~x**"1, and from there onto the tail withp(x) with N changes in the different regimes, and is much slower

~x~177, as seen above. for large values of the argument. In Fig. 4 is shown a log-log
It is clear from Figs. 2 and 3 that(0) is finite, whereas plot of p(0) calculated using the exact res(l¥), as a func-

the limit distribution is singular at the origin when<Gvy  tjon of N for y=1 (the full curve and y=2% (the dashed

(ﬁ)(l*av)/v (16)

<1. Thusp(0), given by curve for a=0.3. Also shown are the asymptotes estimated
" through Egs(15) and(16). These curves illustrate the very
or(0) = 2I(1+1/y) ot fmdt I slow convergence to the limit distribution. Over 100 steps in
N T () 0 the random walk are required whep=3% and «=0.3, in

. order thatp(0)~200. This should be contrasted with the
X exp —t)(1—exp —Nt/a))**¥Y,  (14)  conditions for which the central limit theorem applies, when

0.01 0.1 1 10

100 | Rt | 100
— 7=l ot
-——-— asymptotes Jte FIG. 4. lllustrating the rate of
convergence to the limit distribu-
I tion through the behavior gf(0)
when plotted as a function ofl.
Two distributions are considered
for y=1 and3 ande=0.3 in both
o.01 cases. Also shown are the asymp-
totes derived in the text.

p(0)

0.0001
00
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convergence usually occurs for the addition of approximately o TA=vly)(I+at+vly)(1-v) v
ten random variables. The convergence of the truncatey Le ~ (X")= T(2— ) (a)(a+t viy)a™? e

flight to its Gaussian limit was investigat¢86], and shown

to be slow. Here the convergence to then-Gaussianimit ~ The equivalent fractional moment for the \yedistribution

distributions occurs at an even slower rate than that i”USCan be determined in a similar fashion, and the normalized
trated in Ref.[36], and has repercussions for physical sys-moment

tems described, or simulated, using non-Gaussian stable dis-
tributions. (X" e+ vly)

M= = ,
<XV>Levy F(a)aaly

—a<vliy<l (18

IV. EFRACTIONAL MOMENTS measures thg devigtion of the limit distributipn from the
Levy distribution. Figure 5 shows the normalized moment
A means of characterizing the distributions derived in this(18) as a function of the parametety for various values of
paper other than describing their asymptotic behavior isx. Whena =2, the normalized moment is greater than unity
through using moments. The usual integral moments canndbr positive values ofs/y, and this reflects the fact that the
be defined but fractional momenf29] can and are calcu- limit distribution is greater than the lg distribution in the
lated here for distributions appropriate for a one-dimensionafail, though it has the same asymptotic dependence ®he
random walk. This section will show how these measuresimit distribution is less than the vy distribution near the
provide an alternative means of gauging the rate of convererigin, hence the negative moments of thesy elistribution
gence to the limit distribution and their deviation from the are in excess of the limit distribution. The converse to this is
underlying Levy distribution which governs the step lengths the case whemr<1. The normalized moment is divergent

in the random walk. whenv/y=—«a if <1, and this is indicative of the singular
The vth fractional moment is defined as behavior of the limit distribution at the origin.
WhenN is finite the moment is expressible as the double
()= fo X"pr(x)dx, (17) Imeoral

(X"y=2(1+N/ o)~ *5(x)
and only those moments in the rangel<v<y<2 exist.

The vth fractional moment of the limit distributio6) is 1 —va\ [ (=
given by + se f f tet
I'—v)l'la) 2 o Jo
2 © © C -
(X")y= ;fo J; x”coqux)(1+u?la)” “dx duy, X exp( —t) (1— exp( — Nt/a))u~"" 1
which is easily determined to be —tu”
X ex — du dt,
a(l—exp —Nt/a))

n_ D(=vIyT(a+tvly) ({ v
=TT @y %% 2

where the approximatiof83] used in Sec. Ill has been uti-
lized once again. This expression requires numerical integra-
and is valid foray>|v|. The above result can be analyti- tion in general, but it has a structure reminiscent of the ex-
cally continued to cover the whole parameter domaitt  pression forp(0) given by Eq.(17). This property has been
<wv< by rewriting the above as alluded to elsewherg37], although in a different context.
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FIG. 6. Normalized fractional

21 12 moments for the limit distribution
and for N=10, 100, and 10 000,
MM 1 1 and «=0.3 for each caser de-
notes the order of the moment.
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0.2 | _ lo.2 the finite probability of remaining
"""" N=10 at the origin.
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For the purposes of illustration the spec_lal case wperl is V. DISCUSSION
considered which enables the integration oueo be per-
formed to yield In earlier sections various generalizations of previous

work on stable distributions have been described. As a math-
ematical exercise this has provided a number of analytical
y(1-v) challenges, and has enabled parameter regimes under which
()l (2—1) probgpility densit_ies_ may exhib_it power_-law behavior to be
identified. The principal innovation of this work has been to
introduce step number fluctuations associated with a particu-

(x"y=2(1+N/a)~*5(x)+

«Tl1- K)F 1= 1tV tha—l—v/)/ lar kind of clustering process into the random walk problem.
Y 2 2 0 This approach is motivated through recognizing that step
number fluctuations provide a means for introducing corre-

><exp(—t)(l—exp(—Wt/a))l“’/ydt, lations into the formulation, albeit in a phenomenological

fashion. Analysis has shown that this leads to the possibility
that the probability density of the resultant of the random
and this exists over the rangel<v<1. The normalized walk can gxhibit two different pqwer-law TeG‘mes- This kind
moments fory in this range are shown in Fig. 6 when of behavior was observefll0] in numerical experiments

— } based on a simple cellular automaton model which was used
=0.3 for values oN=10, 100, and 10000, together with the {5 reproduce the transport properties of grains in a rice pile
moments for the limit distribution. The moments for the limit [9]. These authors found that the distribution of trapping
distribution diverge when'>y=1, which is caused by the times in the pile could be represented by a power law of
power-law tail. The moments also diverge whehy+a  approximately—0.97 extending over two decades at small
<0, corresponding te=—0.3, and this behavior is caused trapping times, and another nea.2 extending over more
by an inner power law occurring at small valuesxofThe  than three decades at large trapping times. While recognizing
moment is necessarily unity when=0. The moments for the physical origin of the second regime, they failed to com-
finite N also diverge wherv=1, because the distributions Ment on the first, and it is indeed not obvious why this re-
have exactly the same behavior in the tail as the limit distri-9ime iS predicted by their model. The relationship between
bution. The moment at=0 is discontinuous, but again is the different power laws appearing in the limiting distribu-

necessarily equal to unity; a dot marking the values the finitd'O" derived in Sec. Il is

N moments adopt is shown on the figure. The distance be-
tween the continuous curves and the dot measures the con-

tribution of the &-function which represents the finite prob- o . _
ability of remaining at the origin. Whem is large, this wheres; ands; denote the power-indices in the tail and at

contribution is necessarily small as can be seen from themall scales, respectively. Ufing_the values gprand sy
quoted in Ref[10] predictsa= z5. Figure 1a) compares the

figure. The finiteN distributions are not ;ingular at t_he ori- trapping time distribution that features in Fig. 1 of REt0]

gin, and so moments of these distributions are finite up tQyith the limit distribution of Sec. II. The asymptotes quoted
values ofy=—1. Figure 6 again illustrates the ultraslow rate j, Rref. [10] are shown by the chain lines; these are scaled
of convergence to the limit distribution. Although the frac- gccording to p(x)—2p(x/10), and depicted by the full
tional moments coincide for sufficiently large and positive cyryve. The limit distribution with the predicted value e@fis
values ofv, there are marked differences for negative valueshown by the dotted curve. Figuréby performs a similar

of v, even wherN is as large as 10 000. comparison with the distribution of flight lengths that fea-

sitasit1+a=0,
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tures in Fig. 2 of Ref[10]. There the tail has a power law of through a brief review of previous work on the effect of
approximately—2.13 which extends over two decades, while number fluctuations on random walks.
at small scales the power law is0.76 and extends over a Random walks in two dimensions are often used to model
single decade. Again, the chain line shows the asymptotethe scattering of electromagnetic waves by random media
the full curve corresponds to the scalip§x)— 2.50(x/4), such as rough surfaces. In this approach the scattered com-
and the dotted line is the limit distribution witta predicted  plex electromagnetic field amplitude is represented as a sum
to be ~0.21. In both cases the limit distribution comparesof randomly phased contributions from different scattering
favorably with the scaled cellular automata data. centers. Here there is generally no relationship between the
Although the number fluctuation process proposed in thisjwumber of scattering centers and the amplitude contributed
paper appears at first sight to be somewdmithoc the un- by each scatterer, corresponding to the number of steps in the
derlying model possesses a number of features which ongalk and the length of each step, respectively. In a given
might expect to find associated with natural phenomena. It§luminated area or volume of the scattering medium the
significance in the present context can be better appreciatedimber of scattering centers may be fixed but, if the medium
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is evolving in time or moving relative to the illuminating by the appearance of a new power-law regime, is dependent
beam, then the number of scatterers will change. For exen a trade-off between the behavior of the variations in step
ample, in the case of small particles in suspension which areumber and step length. In the case of the negative binomial
moving in and out of an illuminated volume this process will model a second power law is predicted for all allowed values
be governed by a Poisson distributitthe probability after- of ¥ only whena<3. It is perhaps significant that the con-
effech. On the other hand, a scattering system like the senuum analog of the number distribution is singular at the
surface contains inhomogeneities of many sizes. One i§rigin when this criterion is satisfied. _
readily convinced by visual observation that large waves, 1he choice of the negative binomial number fluctuation
current, wind, and surface contamination tend to modulatdistribution has several advantages. Apart from being a
the structure of the smaller waves. The local behavior ofodel whose variance remains finite and nonzero in the high

descriptors such as surface height and slopeté&smittentor density limit, it is the equilibril_Jm distribytion of a funda— .
inhomogeneous such circumstances: a common feature 0fmental and tractable stochastic population model which is
natural multiscale phenomena such as turbulence but nde!l documented 'B the gtergtudréial]l. This rrl]ashenr?bledd
necessarily indicating the existence of a fractal cascade gf°M€ Progress to be made in developing the higher order
sizes. joint statistical properties de-d|str|bu_ted n0|s¢_28_]. From a
When microwaves are scattered from the sea surface, irp_henonjenologlcal viewpoint, a naive description of three-
homogeneity is manifest as a modulation of the density mdqnensmr)al tgrbu!ent flow, namely_, the spontaneous nucle-
scatterers that often appear to be clustered near wave cresfdion Or “immigration” of large eddies which “give birth

The negative binomial cluster model has been used to chaf® Smaller eddies which eventually “die” due to viscous

acterize this effect in the development of a simple non-dissipation, is analogous to the birth-death-immigration pro-

Gaussian model for the amplitude statistics of the scatteref®SS: Ir_1 the elegtromagnetic SC"’.‘“erir.‘g pr(_)blem the size of
electromagnetic field based on a random walk approach. p&ddies is supordlnated to fluctuations in their number. On the
this system, the individual mean square scattering amplitude%ther Eand’. n thﬁ casehof a con?tg_nt speed random WagkbOf
(step lengths represent the cross sections of the scatterergt'jvenh,,“rat'On Wi osek():_ r;\]nges r?. Irection are governe o y
and are finite. In the high-density limiK distributions are eaé evsrrts mh af irth-deat -|mm||graé|0n process, the
predicted that arendependenof the statistical properties of number and length of steps are correlated. .

the individual steps. The case=2 of the present paper falls It is interesting that the distribution of inter-event times

into this category of problem. The properties of the numbet(i";'.’b.steD Iengthsll‘or the lI:)irtthehath.-imrXigration procless
fluctuation model then entirely determine the form of the€XNIDILS a range of power-law behavior. An exact result can

limit distribution. A necessary condition for the limit distri- °€ derived from the generating function of the number of

bution to be non-Gaussian is that the relative variance of thEVENtS in a finite time interval of duration[39]:
number fluctuations should not vanish as the average number

becomes large. This condition is not satisfied by the Poisson *

distribution, for example. Note tha€ distributions admit a Q(s;T)= 2, (1-s)Np(N;T)
compound representation in which the mean square ampli- N=0

tude of a Gaussian distribution is modulated by a Gamma exp(al'T)

distribution [38]. In the electromagnetic scattering context
this means thaK distributions can be interpreted as being a
random interference pattern with a spatially or temporally
varying local brightness. Although not of the stable CldSs, \yhere 1I' is the characteristic bunching time of the number
distributions are infinitely divisible, which means that thequctuationsy2=F2+ZEF(l—s)/a andR= N/T is the av-
coherent addition oK-distributed variables is governed by a rage even"[ rate. This result redL;ces to the generating func-
distribution belonging to the same class but with a reducet? )

variance. This useful property is inherited from the parent o for a negative binomial distribution in the limitT <1
: property P when there is no time averaging of the number fluctuations.

gar']rqrzgag;rllizlrtyr.esults described above mav be contraste@smg the generating function the distribution of intervals
Yy etween events can be determined. Whesnmuch less than

with the calculations of Sec. Il. These show that when th o ;
step lengths of a random walk aréwyedistributed with y She characteristic time of the number fluctuations, thiS#

<2 (i.e., with infinite variancg the tail of the limit distribu-

- [coshy T+ (y/2I' +T'/2y)sinhy T]¢’

tion of the resultant amplitudpreserveghe power-law be- R(1+ 1/ar)
havior of the distribution characterizing the length of indi- py(t)y~ —— .
vidual steps. This result appears to be independent of the (1+Rt/a)**?

choice of number fluctuation distribution. In the high density

limit a compound representation in the sense described o )
above is clearly not possible. However, it is possible to in-If the events are sufficiently frequent then an inverse power

terpret the continuum limit as representing variations in thdaW in tis obtained. This type of behavior has been heuris-
anomalous diffusion coefficient appearing in Eqs3)—(5).  fically invoked by several groups recently in the context of
When the mean number of steps is very large, number fluc-evy flights and SO 10, 40. Note that the negative bino-
tuations only affect the probability density provided that™Mial model exhibits inner and outer scales, where the aver-
their relative variance remains nonzero, and then mainly irge inter event period i8/R and the correlation time is I/

the regime of small excursions. A strong effect, manifestedn addition to a power-law region.
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VI. SUMMARY AND CONCLUSIONS ther detailed investigation and may, as a result, also explain

Thi h ined q ks where the di t.the power-law tails that are a feature of SOC systems in
1S paper has examined random walks where the distrlz it 16 those occurring at small scales. In addition to this
bution of individual steps comprising the walk is governed

e ) rogram of work, the present approach can be generalized
by stable distributions but where the number of steps in t_h urther by considering the properties of anisotropiy ean-

walk can fluctuate and be subject to clustering. Such an ingom walks with fluctuating steps. Such a generalization may

cess in the context of Optica| Scattering from random medi%roken Spatia| Symmetry’ such as confined magnetized
where step fluctuations model correlated phenomena, such gfasma, among others.

small-scale modulation by larger scale structures. The model

chosen for the step number fluctuations is the negative-

b|nom|_al d!strlb_utlon, which is the steady ;tate of a birth- ACKNOWLEDGMENT

death-immigration process. This has Poisson and Bose- . . _
Einstein (geometri¢ number fluctuations as special cases, This work was supported by the United Kingdom Engi-

and in general the Fano factm‘ar(N)/ﬁ= N/a=1, usually neering and Physical Science Research Council.
for the negative binomial class. Distributions for the distance

of the resultant of the random walk from the origin are ob-

tained, both in the limit when the average number of steps is APPENDIX A

infinite, and also when it is finite. The tails of the distribu-
tions exhibit a power law behavior that has the same chara%—1

teristics as the underlying Mg distribution. This result is variable which is then varied subject to constraining the

true irrespec’;ive of the number of steps take_n in the.rar.'dorpenormalizedrth moment in order to find the distribution
walk. Clustering can lead to the resultant having qualltat|velyfunction for a single step in andimensional random walk

different behavior from the underlying kg properties that . . X : .
describe the individual steps. When the ,product formed bgiixqafr;g(r)nmtr:/ : r(')aribglﬁl ';nznv\'list?]trggcp e;eaﬁﬁloi;goi (ils;zln;re
the cluster parameter and the index of theny eistribution components distributed uniformly over the surface of a hy-

is less than or equal to unity, a different power law at small : . ;
scales is introduced, whereas, if this product is greater thaﬂersphere. The Tsallis entropy is defined 1]

unity, the density is finite at the origin. When the cluster
parameter is infinite, the number of steps is uncorrelated and 1 1 ‘o q

described by Poisson fluctuations, and in this case the limit SalP1= q-1) 1 ?/?J ("™ p(x))%dx |, (A1)
distribution is exactly a Ley distribution, so that the lwgy-

Gnedenko generalization of the central limit theorem applies. = . .

When the individual step lengths are Gaussian,Kaistri-  Which is parametrized by the real numlpiVheng<1, the
bution is obtained. effect of Eq.(Al) is to apply weight to those events for
Walks comprising a finite number of steps always have afvhich x<1, while g>1 biases the events>1. Whenq

inner scale, but a vestige of the inner power-law behavior is~ 1 EQ.(A1) reduces to the familiar integral of pIn p. The
retained in an intermediate region éfy<1. Beyond this stationary values Of.thIS funcpon_al are to be found for when
region the distribution matches onto thévydike tail. The  the PDFp(x) has unit normalization, and thi¢h moment, as
size of the inner scale depends on an inverse power of thaefined throggh |t§1 expectation value, is constrained. The
number of steps. The other noteworthy feature of these did-th moment is defined as
tributions is theé function contribution at the origin. This
represents the finite probability for their being no steps in the
random walk, and thereby remaining at the origin. no-’=<xr>q=J X" ("?p(x))%dx
The convergence to the limit distribution is ultraslow. A
random walk comprising, on average, 100 steps was shown B P in—1s 11 .
to differ substantially from the limiting form, these differ- _ano X (o"p(x))dx (A2)
ences occurring for small valuesxafOnce again the form of
the tail for the distribution is insensitive to the number of
steps. with Q,=27"%T'(n/2) being the surface area of an
The two parameter limit distributions derived in this papern-dimensional unit hypersphere, adi{x) the I function
bear a striking resemblance to distributions obtained fromi18]. Herer>0 is any real number and the existence of
cellular automata computer simulations that have been pumoments is ensured for a range of valueg dfirough using
ported to explain SOC behavior in experimental rice pilesthe g expectatio{Eq. (A2)], which effectively renormalizes
Indeed, distributions obtained from the experimental rice pilghe divergent moments of the \ne distribution. Performing
of Ref. [9] show some semblance of a dual power-law be-a variation on Eq(A1) with respect tq determines the most
havior, though the authors did not comment upon this. Thdikely distribution contingent upon satisfying the applied
precise reason for this apparent similarity is unknown atonstraints, that is,
present, chiefly because the correspondence between the ran-
dom variable appearing in the respective works is unclear.
Seeking the reason for any such correspondence requires fur-

This appendix generalizes the results of R&6] by for-
ulating the Tsallis entropy for an-dimensional random

g +B(1=(x)q) |=0,

Sq[p]+a( 1- f p(x)dx
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where« and B are Lagrange multipliers whose values provide the normalization and scalmgdhe distribution, respec-
tively. The PDF’s that are obtained are a generalization of the Cauchy distrid@inand have qualitatively different
behaviors depending upon whetltgis greater or less than unity, in accord with remarks made concerning the biasing effect
of the Tsallis entropy. Specifically,

Ay(n,r)x"H(1—x"H)HI-® for —o<q<1, O=x=<1
I.l—n/rxn—l
_ T r _ <
p(x)= inﬂ(n/r)anexp( X'ra"), g=1, 0sx<w (A3)
By(n,r)x"~(14x")~HMa~b for 1<q<l+r/n, 0<x<w,

with the normalizing functions defined by

1 n 1
rr 1+_1—q+?) rl"(—q_l)
Aq(n,r)= 1 = n, By(n,r)= 1 1 . n.
Q.r 1+E)F(F)XO in“(q_—l—F)l“(F)xo

The scale parametey, is related to the Lagrange multiplier through= 1//1—q| 8, which can be determined by substituting
Eqg. (A3) into Eq. (A2):

ra<3—Q>f/2(Qnr(1+ 1/(1—q))L'(n/r)

|1—q] r’(1+1/(1—q)+n/r)

roG-9"2 /0 T'(Aq—1)—n/r)[(n/r)
|1—q ( rI’(1/(q—-1))

q-1
) for —o<q<1,

XVt = (A4)

q-1
) for 1<q<1+r/n.

For values ofg outside the range specified in E@\3), the  to accuracyO(u?). Hence the characteristic function is
constraint on the expectation of the-th moment cannot be asymptotic to that of a Gaussian, and the additioMNafta-
satisfied. These results generalize those given in[R6éf.to tistically identical random variables will yield a characteris-
n dimensions and to where a moment of arbitrary omder tic function which is also Gaussian but with scald y(n,r).
constrained to be finite. Those moments of omaerr will Case (b)l<g=<1+r/n. This instance requires evaluation
be similarly constrained. of
The characteristic functio@(u) of the single step dis-

tributions(A3) enable the resultant of the additionMfsuch By(n,r)(2m)"?

Clu)=——=p—1 —

statistically identical random variables to be determined. u

Two cases require consideration depending upon whether

is less than or greater than.umty. o ' . Xf X230 (O[1+ (X (xou)) ]~ @ Vi,
Case (a)—»<q=1. In this case it is convenient to write 0

the characteristic function as o ) ) ) _
and this integral has different asymptotic behavior depending

Aq(n,r)(27r)”’2xé+“’2 upon the size ok/x,u compared with unity. Whenx/x,u
C(u)= qET <1, the change of variable— xu enables the Bessel func-
tion to be expanded in powers afto yield
1
Xf Xn/z‘]nlz—l(xxou)(l_Xr)l/(l_q)dx- Bq(n r)(zﬂ_)nlz *
q __a n-1 rn—-1(q-1)
0 CUW =z Tz |, X HAF %))
Expanding the Bessel function for small valuesuajives ( r(n/2) (xu)2+ )d
—_——_— JRN— Y X
Aq(n,r)(2m)"2x] I(1+n/2)\ 2

CQ(u) =

1
f Xn—l(l_xr)ll(l—q)
0

XXoU 2+ g
—- X

2211 (n/2) T(g—1)—(n+2)/0)T((2+n)/r)x3 )

2n'(n/r)I'(A/(g—21)—nlr)

( I'(n/2)
" T(1+n/2)
B F(A+1/(1—q)+n/H)L'(2+n)/r)x3 )
= AT A=+ (nr 2yt T

+oee for g<1l+r/(n+2)
~exp(—A4(n,r)u?)

to O(u?). Once again the behavior is asymptotic to a Gauss-
~exp(—Aq(n,r)u2) ian random variable for values @fin the range stated.
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Whenx/x,u>1 the asymptotic behavior different and to leading order is:

Bq(n,r)(2m) "2yt [
| N=T7(q-1) : jo XV2m A=D1 () dxt -

C(u)= u

1 n
F((q 1))F( )F 1+3 (n_r/ (a- 1))) ux.\ —ntr/a-1)
- ( O) +eee for 1+r/(n+2)<g<1l+n/r

ey
r/ \(2(qg—1)) q-1 r
~exp(—Aq(n,r)u”) where y=—-n+r/(q—1)<2

which is the characteristic function of a symmetric vie distribution. Thus when—«<q<1+r/(n+2), C9(u)
~exp(—Aq u) for small values ofu, and the statistical properties of a random walk are asymptotic to a Gaussian random
process that leads to normal Brownian diffusion. Whgnfalls in the range %*r/(n+2)<q<1+r/n, CYu)
~exp(=Aqu”), with y=—n+r/(q—1), where 0<y<2 which defines a ey distribution. In this case the random walk is
asymptotic to “fractional” Brownian motion leading to anomalous diffusion. For valueg>ef +r/n, the renormalizedth
moment is not defined. The scaling functidn is related to the diffusion coefficient through evaluation of the appropriate
moment given by Eq(A2). In each of the regimes it is given by

( 1 n 2+n
rNi+-—+-|I'—
1-q r r 2 pegel
1 nt+2) o q
2nF—F 1+ —+ ——
r 1—q r
1 n+2 2+n
il
(a9t " 12 1<q<itri(n+2
A= (n) ( 1 n) X5, <q<l+r/(n+2)
2nl'| = |IM' =——=——
q-1 r
r 1 1“(1 rin 1 )Fn
-1, \t"2lvTgm 2) (%"
- . T 1 me +r/(n+2)<q<l+r/n,
\ /2@ g-1 1
|
with X, given by Eqs(A5). The functionA 4 is continuous as UM D2exp(In(1+u a) %)

g passes through 1, but exhibits a discontinuity as the regime

defining the Ley-like behavior is broached. To the left of (1+a)
the discontinuity the diffusion is Gaussian and to the right it =u" PR 1-u7+ u?”
is anomalous. The coefficient is not defined for values) of
>1+r/n, since theq expectation of theth moment is di- 1 3 1, 3y
vergent in this regime. 3 1+ paT patjutiae
— a
APPENDIX B _meO KU,

This appendix outlines the analysis for obtaining thedefining the coefficient&, and indicesay,, the first four
asymptotic form of the distributions. First the form far  terms of which are given in Table I. N
>1 is obtained. Distributior(6) can be recognized as the  Substituting this expansion into E@6) and writing v

Hankel transform of the function =Xu enables the PDF to be written as the expansion
1-n/2
~ n 1)/2 am+1/2
u(n—l)/2(1+uy/a)—a, p(X) F(n/2) 20 Xam+1 J m J n/2— l( V)

The first nonzero contribution occurs for= 1, which yields
which may be expanded near the origin using Expression(10) given in the text.
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TABLE . Coefficients of the asymptotic expansion for the tail exceeds the second. This occurs whent<c, wherex is

of the distributions.

m K anm
1 (n—1)

2

1 -1 (n—1)
2 7

? Lo D,
E( Q) > Y

3 —1( 3a o? (n—1) 3
EA 2 %

APPENDIX C

chosen so that/(1—exp(—Nt/a))>Xx, and in this regime a
value oft can be found folny value ofx. Thus

2a? °°d I
pfront(x)"’m ) tt

X exp( —t)(1—exp —ﬁt/a))2

l1-«
N
1+ —
o
11—«
2N
1+ —
o

: (C3)

[F(a—l,x)—Z
")
1+Z X |+

)
1+7 X

SN

Xr(a—l,

Xr(a—l,

The following appendixes show how the inner scale asso- _ _
ciated with the PDF’s describing random walks with a finiteWhere I'(a,b) is the complementary incomplete gamma

average number of steps arise.

1. Cauchy distributed steps
Analysis of the integral in Eq11),

2 o0
—f dtt®
7I'(1+a) Jo

i 2 -1
Xexp(—t)(( p— ) +X2) '
a(l—exp(—Nt/a))

function[34]. ExpressionC3) is finite atx~0 and provides

an excellent approximation tp(x) within the inner-scale
region, as may be seen from Figb2 Equations(C2) and
(C3) together show that the PDF is approximately constant
and given by Eq(C3) for 0<x<1/N. Forx~1/N both Egs.
(C2) and(C3) contribute to the value of the density. Indeed,
expanding the incomplete gamma functions and evaluating

the resultant fox~ 1/N shows that

2 _
NI ~ Dl = yae=1, .
Pn(X)~pn(0) + T2+ a) X+ for x>1/N,

proceeds by dividing the range of integration into regio”_sindicating that beyond the inner scale region, the PDF

where one of the terms comprising the denominator domi

matches the power law associated with the limit distribution.

nates the other. The first region corresponds to valuets of larger values ok, contribution (C3) which decreases
that are sufficiently small for the denominator to be apprOXi'monotonicaIIy is negligible and the PDF can be approxi-

mated byx?, i.e., when
t/[ a(1—exp( — Nt/ a))]<X,

in which case:

2 X
Prail(X) = T fo dtt*exp(—t).

mated by Eq(C2)
2. Gaussian distributed steps

The analysis of Eq(13), which occurs for the case
=2, has distributed part of the PDF.

C1/1/2 o
pﬁ(x)% 7Tl72r(a) fO dtta73/2

Note that for large values of, this expression~2/mwx?, _
which is precisely the form for the tail of the distribution X exp( —t)(1—exp( — Nt/ a))%?
according to Eq(8). The apparent divergent behavior as _
y p(—a(l—exp(—l\lt/a))x2
ex

4t ’

—0 is prevented through conditiofC1) which imposes a

smallest allowable value ok~1/N that defines an inner
scale within which the approximatiop.;(x) is invalid.

Hence

2H(X— LIN) (1 + a,X)
Prail(X) =~ AT (1+ )

where y(a,b) is the incomplete gamma functidid34], and

H(x) is the Heaviside unit-step functidid5].

The second region corresponds to valueg @r which
the first term in the denominator of the integrand of El{)

and analysis proceeds in a similar fashion to that for Eg.
(11), except in this instance there are no separate regimes of
behavior. This is because the tail of the distribution is not a
power law; rather it has an exponential behavior. The inte-
gral will be approximately constant if the argument of the
last exponential appearing in the integrand is small. This
occurs when

(1—exp( —Nt/a))~Nt/a,
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and so the inner scale within which the PDF is constantvhich is finite fora>0 and y>0. Integral(D1) can be de-

occurs for values of satisfyingx?< 4/N. The distribution is
asymptotic to the tail of the distribution whes>4/N.

APPENDIX D

The asymptotic behavior that is used to characterize

pﬁLO) in the limit N/a>1 is calculated by first writingy
=Nt/«a to give
2I'(1+1ly)a™ @

NN Vy—a
7l'(a) (N)

Pn(0)~

Xf Va—l—l/y (1_eX[X—V))1+1/7
0

The integral is less than

f e W1 —exp(— ) 7dy, (D1)
0

composed into two regions, the first wheres®=<1, in

which

1+1/y

1
e 11 —exp —v)) T Y7~ V“( 1-— Ev-i-'--

and the second whereslv<<co, on which the integrand can
be approximated by® 17, The total integral can then be

estimated by
1 )
vedv+ f
1

)

Vaflfllydvl

which gives

2yI'(2+1y)a ©

P(0)~ 7I'(a)(1+a)(1—avy) (N,

as given in the text.
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