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Lévy random walks with fluctuating step number and multiscale behavior
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Random walks with step number fluctuations are examined inn dimensions for when step lengths compris-
ing the walk are governed by stable distributions, or by random variables having power-law tails. When the
number of steps taken in the walk is large and uncorrelated, the conditions of the Le´vy-Gnedenko generaliza-
tion of the central limit theorem obtain. When the number of steps is correlated, infinitely divisible limiting
distributions result that can have Le´vy-like behavior in their tails but can exhibit a different power law at small
scales. For the special case of individual steps in the walk being Gaussian distributed, the infinitely divisible
class ofK distributions result. The convergence to limiting distributions is investigated and shown to be
ultraslow. Random walks formed from a finite number of steps modify the behavior and naturally produce an
inner scale. The single class of distributions derived have as special cases,K distributions, stable distributions,
distributions with power-law tails, and those characteristic of high and low frequency cascades. The results are
compared with cellular automata simulations that are claimed to be paradigmatic of self-organized critical
systems.@S1063-651X~99!11511-3#

PACS number~s!: 05.20.2y, 05.40.Fb, 05.45.Df, 66.10.Cb
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I. INTRODUCTION

Multidisciplinary interest in self-organized critical~SOC!
states@1# continues to burgeon~see, e.g., Ref.@2#!. The con-
cept of SOC refers to the spontaneous emergence of tem
ral and spatial scale invariance in nonequilibrium syste
Consideration of the non-Gaussian stochastic processes
are capable of describing SOC states is an important a
topic. A random process that has become a topical candi
is that described by the stable Le´vy class@3#, whose distri-
butions possess power-law tails and whose integral mom
typically diverge. Examples of behavior that are claimed
be relevant to the physical sciences include transport of m
ter and the concomitant emission of radiation in astroph
cal accretion disc systems@4#, the Earth’s magnetospher
during geomagnetic substorms@5#, transport regimes nea
the edge regions of magnetically confined plasmas@6#,
Taylor-Couette flow@7#, the scattering of radiation by ran
dom phase screens and rough surfaces@8#, and particle@9,10#
and energy@11# transport within piles of granular materia
The ‘‘sandpile’’ paradigm has since become a canonical
emplar of SOC. Biological behaviors include those cited
Ref. @12#, together with the errant feeding patterns adop
by albatrosses@13#. Evidence also exists to suggest that t
price of equities can be subject to Le´vy-like fluctuations on
an intraday basis@14#, and that the economic growth of man
industrialized nations is similarly non-Gaussian over cons
erably longer epochs@15#. This list is by no means exhaus
tive or entirely representative, but does serve to illustrate
diversity of systems that can be described by scale-invar
random processes. The manifold occurrences of Le´vy-like
processes in nature has prompted workers to seek an u
lying cause for their prevalence and an information the
based approach has predicted distributions whose asymp
behavior matches with a Le´vy distribution @16#.

The class of Le´vy distributions is defined through the
PRE 601063-651X/99/60~5!/5327~17!/$15.00
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characteristic functionC(u), which in its most general form
may be written as:

ln C~u!52uuug„11 ibv~g,u!…,

where the characteristic index 0,g<2 governs the form of
the tail of the distribution, the index21<b<1 determines
the symmetry properties of the distribution, andv(g,u)
5sgn(u)tan(gp/2) if gÞ1 and (2/p)ln uuu if g51. The prob-
ability density function~PDF! is obtained through Fourie
inversion ofC(u):

p~x!5
1

2p E
2`

`

C~u!exp~ iux!du.

If b.0, the distribution is defined for positive values ofx,
the converse is true forb,0, andb50 describes symmetric
distributions. Of these latter types, well-known closed fo
expressions forp(x) exist for the casesg52 ~Gaussian dis-
tribution! and g51 ~Cauchy distribution!. However, other
less well documented analytical forms exist for special ca
@17# and are worthy of reintroducing to the literature; e.
for g5 2

3 , the symmetric distribution is:

p~x!5S 3

px2D 1/2

expS 2
2

27x2DW1/2,1/6S 4

27x2D ,

where Wa,b(x) is the Whittaker function@18#, and for g
5 1

2 the density is expressible in terms of the Fresnel in
gralsC(x), andS(x) @18#:

p~x!5
1

2xj
@cos~1/4x!„122C~j!…1sin~1/4x!„122S~j!…#,

with j51/(2px)1/2. Closed form expressions can also
obtained whenb51, in which caseg51/2 yields
5327 © 1999 The American Physical Society
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p~x!5
1

A2px3
expS 2

1

2xD , x.0,

andg51/3 gives

p~x!5
1

p S 2

37/6xD 3/2

K1/3X 4

37/4 S 2

3xD 1/2C, x.0,

with Kn(x) a modified Bessel function@18#. All these distri-
butions have an asymptotic form for largex that is a power
law with p(x);x212g to leading order. The epithe
‘‘stable’’ refers to the property that the distributions are i
variant under convolution with themselves, revealing th
importance to random walks, for ifN Lévy distributed ran-
dom variables are added the distribution of the resultan
also a Lévy distribution. This illustrates that if the distribu
tion of a physical property is stable, the statistics of th
property will be persistent.

The Tsallis entropy@19# is a generalization of the familia
Maxwell-Boltzmann entropy, or Shannon information@20#,
and is related to the information dimension that is used
tensively to describe multifractal structures such as those
sulting from diffusion limited aggregation, for example@21#.
It is parametrized through a real numberq, whose value
places weight upon the probability of occurrence of small-
large-scale events depending upon whetherq is greater or
less than unity. The Tsallis entropy provides a formalism t
allows generalization of most of the principal results of th
modynamics and statistical physics, viz. the BoltzmannH
theorem @22#, the Onsager reciprocity theorem@23#, the
fluctuation-dissipation theorem@24# and the concavity of the
entropy forq.0 @25#. However, there is, apparently, no b
sic equation akin to Liouville’s theorem from which it can b
obtained. Varying the Tsallis entropy subject to imposi
two constraints, that of unit normalization and the~suitably
defined! variance@16#, obtains distributions that can posse
power-law tails depending upon the value ofq. The calcula-
tion described in Ref.@16# determines the canonical distribu
tion function.

The principal purpose of this paper is to consider
grand canonical ensemble through determining the distr
tion for the resultant of ann-dimensional random walk fo
when the steps comprising the walk fluctuate in number
when the length of each step is governed by a stable di
bution, or by distributions that are asymptotic to stable d
tributions. The motivation for such a development
prompted by past analyses of random walks with fluctuat
step number which have proved to be an effective tool
studying the clutter in coherent optical and microwave
mote sensing systems@26#, for example. These provide
graphic illustration of the failure of the central limit theore
of classical statistics@27#, and a tangible method for produc
ing non-Gaussian statistics through a physical model. An
ample that can be derived in this fashion is theK distribution
@28#, and it will be shown how this results as a limitin
special case of a Le´vy random walk with a fluctuating num
ber of steps. Step number fluctuations introduce correlat
into the random walk, with fluctuations on short sca
modulated by larger scale structures. These correlations
to a class of infinitely divisible limiting distributions involv
ing two parameters. These distributions are shown to h
ir
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special cases embracingK distributions, Le´vy distributions,
distributions possessing power-law tails, and those charac
istic of high- and low-frequency cascades. Each of these
gimes will be explored.

The paper is organized as follows. Section II considers
statistics of random walks having step lengths governed
stable distributions, or by distributions possessing power-
tails for when the number of steps in the walk is itself
random variable. Particular attention is paid to negati
binomial number fluctuations that can account for corre
tions or clustering in the number of steps. Limiting forms
the distributions are obtained for when theaveragenumber
of steps in the walkN̄→`, and solutions in terms of tabu
lated functions are obtained for special cases. The gen
form that these distributions adopt at small- and large-sc
sizes is studied. Section III considers how these distributi
are modified for when the random walks comprise afinite
average number of steps and the convergence of these d
butions to their limiting forms. Section IV discusses ways
characterizing differences between these distributions
Lévy distributions using fractional moments. Section V hig
lights the significance of the various parameter regimes
describe these distributions, and discusses their relation
with multicascade behavior and self-organized critical s
tems. Section VI summarizes results and draws conclusi
Many of the technical details are assigned to appendi
Appendix A generalizes the results in Ref.@16# by obtaining
the distribution of ann-dimensional random variablex
through variation of the Tsallis entropy subject to constra
ing the renormalizedr th moment, wherer may be fractional
@29#. This generalization extends the parameter space
which random processes that are asymptotic to Le´vy pro-
cesses can occur. Other details pertaining to the analys
the grand canonical ensemble are assigned to other app
ces.

II. RANDOM WALKS WITH FLUCTUATING
STEP NUMBER

This section derives the probability density functio
~PDF! for the resultant of a random variablex in n dimen-
sions. Herex is ann vector of distancex5uxu from the origin
having the remainingn21 polar components distributed un
formly over the surface of a unit hypersphere. The PDF
the resultant of a coherent addition ofN such random vari-
ables,

x5(
j 51

N

xj ,

is facilitated through working with the characteristic functio
of the random variablesx. When each of thexj is statistically
similar and independent, the characteristic function ofx is
the N-fold product of the characteristic functions for thexj ,
so that

CN~u!5„C~u!…N,

where
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C~u!5^exp~2 iu•x!&5
~2p!n/2

un/221 E
0

`

xn/2p~x!Jn/221~xu!dx,

~1!

with Jn(x) a Bessel function of the first kind@18#, u5uuu.
The PDF ofx then follows by Fourier inversion of Eq.~1!,

pN~x!5
1

~2p!n E exp~ ix•u!CN~u!du, ~2!

where the subscriptN has been introduced to denote a ra
dom walk comprisingN steps. The length of each step in th
random walk is governed by a Le´vy distribution, or one
whose properties are asymptotic to a Le´vy distribution, as
discussed in Appendix A. In these circumstances the cha
teristic function may be taken to have the form

CN~u!5exp~2Luuug!,

where 0,g<2.
To treat the grand canonical ensemble requires consi

ation of a random walk whose individual steps are descri
by stable distributions but where the number of steps in
walk fluctuate. Suppose that the discrete random variabN
has probability distribution functionP(N). The characteris-
tic function that results from averaging over all realizatio
of N is

CN̄~u!5(
N

P~N!„C~u!…N.

To enable further progress requires a model for the num
fluctuations. TakingP(N) to be the negative binomial distri
bution accounts for clustering in the number of steps an
the steady state process that describes a birth-de
immigration process@28,30,31#. In this case,

P~N!5S N1a21

N
D ~N̄/a!N

~11N̄/a!N1a
,

where N̄ is the mean of the distribution anda.0 is the
cluster parameter. The cluster parameter is related to
variance of the negative binomial distribution throu
Var(N)/N̄251/a, which is the ratio of immigration to birth
rate in the birth-death-immigration process@28#. When a
51 the negative binomial distribution is the Bose-Einstein
geometric distribution, and accounts for thermal num
fluctuations. Whena→` it is the Poisson distribution, de
scribing uncorrelated steps. Using this model gives the a
aged characteristic function to be

CN̄~u!5S 11
N̄

a
„12exp~2Lug!…D 2a

, ~3!

whereupon the PDF is
-
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pN̄~x!5
212n/2

G~n/2!
xn/2E

0

`

un/2Jn/221~xu!

3S 11
N̄

a
„12exp~2Lug!…D 2a

du. ~4!

Rescaling the characteristic function through the transform
tion u→u/N̄1/g and then lettingN̄→`, one obtains the limit
distribution forpN̄(x):

p`~x!5
212n/2

G~n/2!
xn/2E

0

`

un/2Jn/221~xu!~11Lug/a!2adu.

~5!

It should be stressed that this result is valid if the individu
steps in the walk are drawn from the class of stable distri
tions or indeed from those described by equations appea
in Appendix A which are asymptotic to stable distribution
Note that the further transformationsu→(1/L)1/gu, fol-
lowed byx→(L)1/gx, yield the compact result for the scale
PDF:

p`~x!5
212n/2

G~n/2!
xn/2E

0

`

un/2Jn/221~xu!~11ug/a!2adu.

~6!

While it is not possible to evaluate Eqs.~4!–~6! for arbitrary
values ofg anda, some special cases that can be determi
exactly are worthy of mention.

When a→` in Eq. ~6!, the characteristic function
→exp(2ug), which retrieves the Le´vy distribution. Hence
for Poisson number fluctuations, the Le´vy-Gnedenko gener-
alization @32# of the central limit theorem applies. Ifg52
and a is arbitrary, then Eq.~6! can be evaluated exactly t
obtain

p~x!5
2a1/2

G~n/2!G~a! S a1/2x

2 D n/21a21

Ka2n/2~a1/2x!, ~7!

whereKn(x) is a modified Bessel function@18# from which
the eponymous distribution derives its name. TheK distribu-
tion does not possess a power-law tail, rather, forx@1,
it is asymptotic to theG distribution with p(x);x(n23)/21a

3exp(2x). All its moments exist and are in excess of th
equivalent order moments of a Gaussian distribution. E
pressions for Eqs.~5! and ~6! in closed form or involving
tabulated functions cannot be found for arbitrary values oa
and g, nevertheless, the behavior for both large and sm
values ofx can be found. Whenx@1 the form of Eq.~6! is
governed by the behavior of the characteristic function n
u50. This behavior is influenced by the indexg, which
stems from the Le´vy-like properties rather thana which af-
fects the clustering of steps in the walk. In Appendix B it
shown that to leading order the tails of the distribution ad
the form

p`~x!;
222nG~n1g!~11g/2!sin~pg/2!

G~n/2!G~1/2!G„~11n1g!/2…
x212g, ~8!
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i.e., a power law with exactly the same index as a Le´vy
distribution with indexg. Thus the dimension in which th
random walk takes place does not alter the form of the t
of the distribution, providing the random variables are is
tropic.

New behavior emerges whenx!1. Here the form of the
distribution depends upon the size ofag compared with
unity. If ag.1 the value ofp(x) is finite at the origin, so
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the random variable possesses an inner scale. Conver
if ag,1, p(x);xag21 is singular ~but integrable! at the
origin, and clearly has a different power law from that e
hibited by the tail. The special caseag51 divides the
behavior, but also is singular at the origin whenn51 with
p(x);22aa/p ln(x) and is constant for higher dimension
Specifically when x!1 the limit distribution has the
forms
p`~x!;5
212agG„~n2ag!/2…aa

G~n/2!G~ag/2!
xag21, 0,ag,1

G„~n21!/2…aa

G~n/2!p1/2 , ag51,n.1

S 212n/2

G~n/2! D
2 G~n/g!G~a2n/g!an/g

gG~a!
xn21, ag.1.
by
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n-
Distribution ~6! can be conveniently characterized using t
ratio of cumulatives

r 5

E
0

1

p`~x!dx

E
1

`

p`~x!dx

.

If r is less than unity, the distribution has greater weight
the tail than the ‘‘front,’’ the converse being true ifr .1.
This measure is used to chart the phase space for distribu
~6! shown in Fig. 1, which is parametrized in terms of t
two parametersa.0 and 0<g<2; distributions for a one-
dimensional random walk are illustrated. The vertical dot
line shows the locus ofr 51 for the Lévy distribution, which
occurs atg51; the region to the left of this line~i.e., g
,1) corresponds tor ,1. The solid line is the locus ofr
51 for distributions~6!, which can be approximated bya
53/(12g)22. The region to the left of this curve hasr
,1, and corresponds to where the cumulative probability
the tail is greater than that of the front, the converse be
true to the right of the curve. The line for the Le´vy distribu-
tion is an asymptote to this curve whena→`, and it has
already been noted that Poisson number fluctuations pro
a Lévy distribution in this limit. The chain curve shows th
locus ag51, above this the PDF has an inner-scale an
power-law tail, below the line it has power laws both in t
tail and small values ofx. Section III discusses how thes
distributions are modified by finiteN̄ and the manner in
which the distributions converge to the limiting case.

III. DISTRIBUTIONS WITH FINITE N̄ AND
CONVERGENCE TO THE LIMIT

The analysis of Sec II is now extended to account fo
finite mean number of steps in the random walk. As befo
the distribution that governsN is negative binomial, with a
cluster parametera. Recall that a Le´vy distribution with in-
dexg has a power-law tail and is finite for small values ofx.
n

on

d

f
g

ce

a

a
,

WhenN statistically identical random variables governed
these distributions are added and the meanN̄→`, singular
behavior at the origin is obtained ifag<1. The anticipated
behavior for finite values ofN̄ is for the removal of this weak
singularity at the origin, but that a vestige of the inn
power-law behavior be retained, and this is indeed the c
This analysis also informs the important question of the r
of convergence to the limit distribution, which will be see
to be ultraslow.

The analysis in this section will be illustrated for a ra
dom walk in one dimension, in which case the PDF for fin
N̄, given by Eq.~4!, is.

pN̄~x!5
2

p
E

0

`

cos~xu!F 11
N̄

a
X12expS 2

ug

N̄
D CG2a

du

~9!

where scalingsu→(N̄L)21/gu, followed by x→(N̄L)1/gx
have been used. Asymptotic analysis of Eq.~9! reveals that
the tail of the distribution is unchanged by the introducti
of finite N̄, so that

pN̄~x!;
2G~11g!sin~pg/2!

p
x212g, x@1

which is Eq.~8! with n51. The behavior at other values ofx
can be found by rewriting the characteristic function appe
ing in Eq. ~9! using the integral definition of theG function
@18# in order to remove the algebraic denominator. This e
ables the PDF to be expressed as the double integral

pN̄~x!5
2

pG~a!
E

0

`

dt ta21 exp~2t !

3exp~2N̄t/a!E
0

`

du

3expXN̄t

a
expS 2

ug

N̄
D Ccos~ux!.
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FIG. 1. A phase space of th
limit distribution parametrized in
terms of the Le´vy indexg and the
cluster parametera. The solid
curve is the locus on which the ra
tio of cumulantsr 51. Distribu-
tions in regions to the left of this
line have greater weight in the
tail, with the front of the distribu-
tion having greater weight to the
right of the curve. The vertical
line is the locus for the Le´vy dis-
tribution, which occurs atg51
and is independent ofa. The
chain line is the locusag51,
above which the distributions
have an inner scale and a powe
law tail. Below this curve, distri-
butions possess two power laws.
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The difficulty of evaluating the ‘‘exponential of an expone
tial’’ can be surmounted with the aid of the approximati
@33#

expXN̄t

a
expS 2

ug

N̄
D C'11„exp~N̄t/a!21…

3expS 2
tug

a„12exp~2N̄t/a!…
D ,

which for largeN̄ reduces to the conventional steepest
scent approximation, and for sufficiently small values ofu is
correct for arbitrary values ofN̄. Using this approximation
evaluates the PDF as

pN̄~x!52~11N̄/a!2ad~x!1
2

pG~a!
E

0

`

dt ta21

3exp~2t !„12exp~2N̄t/a!…E
0

`

du cos~ux!

3expS 2
tug

a„12exp~2N̄t/a!…
D . ~10!

Thed function term represents the finite probability for the
being zero steps in the random walk and hence remainin
the origin. This term is comparatively large for smallN̄, and
decreases to zero asN̄→`. The integral term in the abov
represents the distributed part of the PDF upon which at
tion is now focussed. Although the integral cannot be eva
ated analytically for arbitrary values ofg, its general struc-
-

at

n-
-

ture can be discerned by examination of particular cas
Selectingg51 means the underlying distribution governin
step lengths is Cauchy, and enables the integral overu to be
performed:

pN̄~x!52d~x!~11N̄/a!2a1
2

pG~11a!
E

0

`

dt ta exp~2t !

3XS 1t

a„12exp~2N̄t/a!…
D 2

1x2C21

. ~11!

Appendix C 1 shows how the integral appearing in Eq.~11!
can be decomposed into terms that describe the behavi
small and large values ofx, viz:

pN̄~x!'ptail~x!1pfront~x!

5
2

pG~11a!x2 E
0

x

dt ta exp~2t !

1
2a

pG~a!
E

x

`

dt ta22
„12exp~2N̄t/a!…2 exp~2t !

5
2H~x21/N̄!g~11a,x!

pG~11a!x2 1
2a

pG~a!
H G~a21,x!

22S 11
N̄

a
D 12a

GXa21,S 11
N̄

a
D xC

1S 11
2N̄

a
D 12a

GXa21,S 11
2N̄

a
D xCJ , ~12!

where g(a,b) and G(a,b) are the incompleteG functions
@34#, andH(x) the Heaviside unit-step function@35#. Integral
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FIG. 2. Illustrating on log-log
plots the PDF’s that feature in th
text. ~a! shows the limit distribu-

tion corresponding to N̄→`
~dashed line!, which is contrasted

with the distribution for N̄55
~full line! when g51 and a
50.3. Also shown are the asymp
totes for small and large dimen
sionless values ofx. The thorn on
the x axis denotes the position a
which the inner solution resolve
the singularity that is an inheren
feature of the limit distribution.
~b! shows how the distribution for

N̄55 can be constructed from th
terms pfront(x) and ptail(x), and
their sum forg51 anda50.3.
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~11! possesses inner, intermediate, and large-scale beha
The inner scale is defined forx,1/N̄, throughout which the
PDF is approximately constant. For those values ofx within
the intermediate region 1/N̄,x,1, the PDF matches ont
the small-scale asymptote of the limit distribution, so th
p(x);xa21. The outer scale forx@1 has the usual Le´vy-
like tail behavior withp(x);x22.

The distribution, the various contributions for the appro
mation to it, and the corresponding asymptotes and s
regions are illustrated in Fig. 2. Figure 2~a! shows the limit
distribution and the distribution for whenN̄55 correspond-
ing to the dashed and full curves, respectively: in both ca
a50.3 andg51. The asymptotes derived in Sec. II are a
shown. The distributions have identical tails, but exhibit d
ferent behavior at small values ofx. The limit distribution is
singular at the origin, but this singularity is resolved by t
finite N̄ distribution with inner scale at;1/N̄, the position of
which is marked by the thorn on thex axis. Figure 2~b!
compares approximation~12! with a numerical solution of
Eq. ~11! for when N̄55. The full curve gives the actua
distribution, and the dot-dashed line denotes the contribu
pfront(x), which provides the inner- and intermediate-sc
behavior but which is negligible in the tail. The dot-d
dashed curve depicts the contributionptail(x), which de-
scribes the tail of the distribution, and has a cutoff at
inner scale. The dotted curve gives the sumptail(x)
1pfront(x). Just beyond the cutoff, both terms contribute
ior.

t

-
le
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n
e

e

give an intermediate behavior that matches onto the in
power law of the limit distribution.

Another special case for which the integral overu appear-
ing in Eq. ~10! can be performed is for Gaussian distribut
step lengths, i.e., forg52, in which case

pN̄~x!'
a1/2

p1/2G~a!
E

0

`

dt ta23/2exp~2t !

3X12expS 2
N̄t

a
D C3/2

3expS 2a„12exp~2N̄t/a!…x2

4t
D ,

and, lettingN̄→`, one obtains exactly the limitingK distri-
bution

p`~x!5
a1/2

p1/2G~a!
E

0

`

dt ta23/2exp~2t !expS 2
ax2

4t D
5

2a1/2

p1/2G~a! S x

2D a21/2

Ka21/2~a1/2x!,

which may be compared with Eq.~6! on settingn51. Recall
that theK density does not have a power-law tail, but c
have an inner power-law ifa,1/2. FiniteN̄ only affects the
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PRE 60 5333LÉVY RANDOM WALKS WITH FLUCTUATING STEP . . .
FIG. 3. Contrasting the way in
which the distribution changes

with N̄ when g5
2
3 and a5

1
2 .

The limit distribution (N̄→`, full
curve! is shown together with dis-

tributions for N̄5100 and 10.
Thorns on thex axis mark the po-
sition of the inner-scale region

the black symbol is forN̄510,

and the open symbol forN̄5100.
All quantities are dimensionless.
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inner-scale region, and once again removes the weak si
larity. In Appendix C 2 the inner scale is shown to occ
whenx2,4/N̄, within which the PDF is approximately con
stant.

In general the inner scale occurs when

x;g~N̄!21/g, ~13!

as illustrated in Fig. 3, which contrasts the limit distributio
shown by the full curve, with the distributions forN̄510 and
100, shown by the dot-dashed and dotted curves, res
tively. The values of the indices areg5 2

3 anda5 1
2 . It can

be seen that the inner scale, at locations denoted by thorn
the x axis, decreases with increasingN̄ in accord with Eq.
~13!. Beyond the inner-scale region the distribution match
onto the inner power law of the limit distribution wit
p(x);xag21, and from there onto the tail withp(x)
;x212g, as seen above.

It is clear from Figs. 2 and 3 thatp(0) is finite, whereas
the limit distribution is singular at the origin when 0,ag
,1. Thusp(0), given by

pN̄~0!5
2G~111/g!a1/g

pG~a!
E

0

`

dt ta2121/g

3exp~2t !„12exp~2N̄t/a!…111/g, ~14!
u-

,

c-

on

s

which is the probability ofreturning to the origin ~the d
function term is the probability ofremainingat the origin!, is
indicative of the rate of convergence to the limit distributio
The behavior ofp(0) for N̄/a!1 is obtained by approxi-
mating „12exp(2N̄t/a)… with N̄t/a, whereupon

pN̄~0!'
2G~111/g!

p
~N̄!111/g. ~15!

The behavior ofpN̄(0) in the other limitN̄/a@1 is slightly
more involved, and the detail for obtaining the result

pN̄~0!'
2gG~211/g!aa

pG~a!~11a!~12ag!
~N̄!~12ag!/g ~16!

is given in Appendix D. Note that the power-law dependen
with N̄ changes in the different regimes, and is much slow
for large values of the argument. In Fig. 4 is shown a log-
plot of p(0) calculated using the exact result~14!, as a func-
tion of N̄ for g51 ~the full curve! and g5 1

2 ~the dashed
curve! for a50.3. Also shown are the asymptotes estima
through Eqs.~15! and ~16!. These curves illustrate the ver
slow convergence to the limit distribution. Over 100 steps
the random walk are required wheng5 1

2 and a50.3, in
order thatp(0);200. This should be contrasted with th
conditions for which the central limit theorem applies, wh
-

d

p-
FIG. 4. Illustrating the rate of
convergence to the limit distribu
tion through the behavior ofp(0)

when plotted as a function ofN̄.
Two distributions are considere
for g51 and1

2 anda50.3 in both
cases. Also shown are the asym
totes derived in the text.
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FIG. 5. Normalized fractional
moments as a function ofn/g for
different values of the cluster pa
rametera.
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convergence usually occurs for the addition of approxima
ten random variables. The convergence of the truncated L´vy
flight to its Gaussian limit was investigated@36#, and shown
to be slow. Here the convergence to the~non-Gaussian! limit
distributions occurs at an even slower rate than that ill
trated in Ref.@36#, and has repercussions for physical sy
tems described, or simulated, using non-Gaussian stable
tributions.

IV. FRACTIONAL MOMENTS

A means of characterizing the distributions derived in t
paper other than describing their asymptotic behavior
through using moments. The usual integral moments can
be defined but fractional moments@29# can and are calcu
lated here for distributions appropriate for a one-dimensio
random walk. This section will show how these measu
provide an alternative means of gauging the rate of con
gence to the limit distribution and their deviation from th
underlying Lévy distribution which governs the step length
in the random walk.

The nth fractional moment is defined as

^xn&5E
0

`

xnpN̄~x!dx , ~17!

and only those moments in the range21,n,g,2 exist.
The nth fractional moment of the limit distribution~6! is
given by

^xn&5
2

p E
0

`E
0

`

xn cos~ux!~11ug/a!2adx du,

which is easily determined to be

^xn&5
G~2n/g!G~a1n/g!

G~2n!G~a!g
secS 2

np

2 D ,

and is valid forag.unu. The above result can be analyt
cally continued to cover the whole parameter domain21
,n,g by rewriting the above as
ly

-
-
is-

s
is
ot

al
s
r-

^xn&5
G~12n/g!G~11a1n/g!~12n!

G~22n!G~a!~a1n/g!aa/g secS 2
np

2 D .

The equivalent fractional moment for the Le´vy distribution
can be determined in a similar fashion, and the normali
moment

M @n#5
^xn&

^xn&Levy
5

G~a1n/g!

G~a!aa/g , 2a,n/g,1 ~18!

measures the deviation of the limit distribution from th
Lévy distribution. Figure 5 shows the normalized mome
~18! as a function of the parametern/g for various values of
a. Whena52, the normalized moment is greater than un
for positive values ofn/g, and this reflects the fact that th
limit distribution is greater than the Le´vy distribution in the
tail, though it has the same asymptotic dependence onx. The
limit distribution is less than the Le´vy distribution near the
origin, hence the negative moments of the Le´vy distribution
are in excess of the limit distribution. The converse to this
the case whena<1. The normalized moment is divergen
whenn/g52a if a<1, and this is indicative of the singula
behavior of the limit distribution at the origin.

WhenN̄ is finite the moment is expressible as the dou
integral

^xn&52~11N̄/a!2ad~x!

1
1

G~2n!G~a!
secS 2vp

2
D E

0

`E
0

`

ta21

3exp~2t !„12exp~2N̄t/a!…u2n21

3expS 2tug

a„12exp~2N̄t/a!…
D du dt,

where the approximation@33# used in Sec. III has been uti
lized once again. This expression requires numerical inte
tion in general, but it has a structure reminiscent of the
pression forp(0) given by Eq.~17!. This property has been
alluded to elsewhere@37#, although in a different context
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PRE 60 5335LÉVY RANDOM WALKS WITH FLUCTUATING STEP . . .
FIG. 6. Normalized fractional
moments for the limit distribution

and for N̄510, 100, and 10 000,
and a50.3 for each case.n de-
notes the order of the momen
The dot at n/g50, where M @n#

51 denotes the discontinuity in

the finite N̄ distributions due to
the finite probability of remaining
at the origin.
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For the purposes of illustration the special case wheng51 is
considered which enables the integration overu to be per-
formed to yield

^xn&52~11N̄/a!2ad~x!1
g~12n!

pG~a!G~22n!

3GS 12
n

g DGS 12v
2 DGS 11v

2 D E
0

`

ta212v/g

3exp~2t !„12exp~2N̄t/a!…12v/gdt,

and this exists over the range21,n,1. The normalized
moments forn in this range are shown in Fig. 6 whena

50.3 for values ofN̄510, 100, and 10 000, together with th
moments for the limit distribution. The moments for the lim
distribution diverge whenn.g51, which is caused by the
power-law tail. The moments also diverge whenn/g1a
,0, corresponding ton520.3, and this behavior is cause
by an inner power law occurring at small values ofx. The
moment is necessarily unity whenn50. The moments for

finite N̄ also diverge whenn51, because the distribution
have exactly the same behavior in the tail as the limit dis
bution. The moment atn50 is discontinuous, but again i
necessarily equal to unity; a dot marking the values the fi

N̄ moments adopt is shown on the figure. The distance
tween the continuous curves and the dot measures the
tribution of thed-function which represents the finite prob

ability of remaining at the origin. WhenN̄ is large, this
contribution is necessarily small as can be seen from

figure. The finiteN̄ distributions are not singular at the or
gin, and so moments of these distributions are finite up
values ofn521. Figure 6 again illustrates the ultraslow ra
of convergence to the limit distribution. Although the fra
tional moments coincide for sufficiently large and positi
values ofn, there are marked differences for negative valu
of n, even whenN̄ is as large as 10 000.
i-

e

e-
n-

e

o

s

V. DISCUSSION

In earlier sections various generalizations of previo
work on stable distributions have been described. As a m
ematical exercise this has provided a number of analyt
challenges, and has enabled parameter regimes under w
probability densities may exhibit power-law behavior to
identified. The principal innovation of this work has been
introduce step number fluctuations associated with a part
lar kind of clustering process into the random walk proble
This approach is motivated through recognizing that s
number fluctuations provide a means for introducing cor
lations into the formulation, albeit in a phenomenologic
fashion. Analysis has shown that this leads to the possib
that the probability density of the resultant of the rando
walk can exhibit two different power-law regimes. This kin
of behavior was observed@10# in numerical experiments
based on a simple cellular automaton model which was u
to reproduce the transport properties of grains in a rice
@9#. These authors found that the distribution of trappi
times in the pile could be represented by a power law
approximately20.97 extending over two decades at sm
trapping times, and another near22.2 extending over more
than three decades at large trapping times. While recogni
the physical origin of the second regime, they failed to co
ment on the first, and it is indeed not obvious why this
gime is predicted by their model. The relationship betwe
the different power laws appearing in the limiting distrib
tion derived in Sec. II is

sf1ast111a50,

wherest and sf denote the power-indices in the tail and
small scales, respectively. Using the values forst and sf
quoted in Ref.@10# predictsa5 1

40 . Figure 7~a! compares the
trapping time distribution that features in Fig. 1 of Ref.@10#
with the limit distribution of Sec. II. The asymptotes quote
in Ref. @10# are shown by the chain lines; these are sca
according to p(x)→2p(x/10), and depicted by the ful
curve. The limit distribution with the predicted value ofa is
shown by the dotted curve. Figure 7~b! performs a similar
comparison with the distribution of flight lengths that fe
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FIG. 7. Comparisons of the
distributions obtained from the
cellular automata results of Ref
@10# for trapping times~a! and
flight lengths ~b! with the limit
distribution with parameters ob
tained from the data. Units are ar
bitrary.
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tures in Fig. 2 of Ref.@10#. There the tail has a power law o
approximately22.13 which extends over two decades, wh
at small scales the power law is20.76 and extends over
single decade. Again, the chain line shows the asympto
the full curve corresponds to the scalingp(x)→2.5p(x/4),
and the dotted line is the limit distribution witha predicted
to be ;0.21. In both cases the limit distribution compar
favorably with the scaled cellular automata data.

Although the number fluctuation process proposed in
paper appears at first sight to be somewhatad hoc, the un-
derlying model possesses a number of features which
might expect to find associated with natural phenomena
significance in the present context can be better appreci
s,

is

ne
ts
ed

through a brief review of previous work on the effect
number fluctuations on random walks.

Random walks in two dimensions are often used to mo
the scattering of electromagnetic waves by random me
such as rough surfaces. In this approach the scattered c
plex electromagnetic field amplitude is represented as a
of randomly phased contributions from different scatteri
centers. Here there is generally no relationship between
number of scattering centers and the amplitude contribu
by each scatterer, corresponding to the number of steps in
walk and the length of each step, respectively. In a giv
illuminated area or volume of the scattering medium t
number of scattering centers may be fixed but, if the medi
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is evolving in time or moving relative to the illuminatin
beam, then the number of scatterers will change. For
ample, in the case of small particles in suspension which
moving in and out of an illuminated volume this process w
be governed by a Poisson distribution~the probability after-
effect!. On the other hand, a scattering system like the
surface contains inhomogeneities of many sizes. One
readily convinced by visual observation that large wav
current, wind, and surface contamination tend to modu
the structure of the smaller waves. The local behavior
descriptors such as surface height and slope isintermittentor
inhomogeneousin such circumstances: a common feature
natural multiscale phenomena such as turbulence but
necessarily indicating the existence of a fractal cascad
sizes.

When microwaves are scattered from the sea surface
homogeneity is manifest as a modulation of the density
scatterers that often appear to be clustered near wave c
The negative binomial cluster model has been used to c
acterize this effect in the development of a simple no
Gaussian model for the amplitude statistics of the scatte
electromagnetic field based on a random walk approach.
this system, the individual mean square scattering amplitu
~step lengths! represent the cross sections of the scatte
and are finite. In the high-density limit,K distributions are
predicted that areindependentof the statistical properties o
the individual steps. The caseg52 of the present paper fall
into this category of problem. The properties of the num
fluctuation model then entirely determine the form of t
limit distribution. A necessary condition for the limit distr
bution to be non-Gaussian is that the relative variance of
number fluctuations should not vanish as the average num
becomes large. This condition is not satisfied by the Pois
distribution, for example. Note thatK distributions admit a
compound representation in which the mean square am
tude of a Gaussian distribution is modulated by a Gam
distribution @38#. In the electromagnetic scattering conte
this means thatK distributions can be interpreted as being
random interference pattern with a spatially or tempora
varying local brightness. Although not of the stable classK
distributions are infinitely divisible, which means that th
coherent addition ofK-distributed variables is governed by
distribution belonging to the same class but with a redu
variance. This useful property is inherited from the par
gamma density.

The earlier results described above may be contra
with the calculations of Sec. II. These show that when
step lengths of a random walk are Le´vy distributed withg
,2 ~i.e., with infinite variance!, the tail of the limit distribu-
tion of the resultant amplitudepreservesthe power-law be-
havior of the distribution characterizing the length of ind
vidual steps. This result appears to be independent of
choice of number fluctuation distribution. In the high dens
limit a compound representation in the sense descri
above is clearly not possible. However, it is possible to
terpret the continuum limit as representing variations in
anomalous diffusion coefficientL appearing in Eqs.~3!–~5!.
When the mean number of steps is very large, number fl
tuations only affect the probability density provided th
their relative variance remains nonzero, and then mainly
the regime of small excursions. A strong effect, manifes
x-
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by the appearance of a new power-law regime, is depen
on a trade-off between the behavior of the variations in s
number and step length. In the case of the negative binom
model a second power law is predicted for all allowed valu
of g only whena, 1

2 . It is perhaps significant that the con
tinuum analog of the number distribution is singular at t
origin when this criterion is satisfied.

The choice of the negative binomial number fluctuati
distribution has several advantages. Apart from being
model whose variance remains finite and nonzero in the h
density limit, it is the equilibrium distribution of a funda
mental and tractable stochastic population model which
well documented in the literature@31#. This has enabled
some progress to be made in developing the higher o
joint statistical properties ofK-distributed noise@28#. From a
phenomenological viewpoint, a naive description of thre
dimensional turbulent flow, namely, the spontaneous nu
ation or ‘‘immigration’’ of large eddies which ‘‘give birth’’
to smaller eddies which eventually ‘‘die’’ due to viscou
dissipation, is analogous to the birth-death-immigration p
cess. In the electromagnetic scattering problem the siz
eddies is subordinated to fluctuations in their number. On
other hand, in the case of a constant speed random wa
given duration whose changes of direction are governed
‘‘death’’ events in a birth-death-immigration process, t
number and length of steps are correlated.

It is interesting that the distribution of inter-event time
~i.e., step lengths! for the birth-death-immigration proces
exhibits a range of power-law behavior. An exact result c
be derived from the generating function of the number
events in a finite time interval of durationT @39#:

Q~s;T!5 (
N50

`

~12s!Np~N;T!

5
exp~aGT!

@coshyT1~y/2G1G/2y!sinhyT#a ,

where 1/G is the characteristic bunching time of the numb
fluctuations,y25G212R̄G(12s)/a, andR̄5N̄/T is the av-
erage event rate. This result reduces to the generating f
tion for a negative binomial distribution in the limitGT!1
when there is no time averaging of the number fluctuatio
Using the generating function the distribution of interva
between events can be determined. Whent is much less than
the characteristic time of the number fluctuations, this is@39#

p1~ t !'
R̄~111/a!

~11R̄t/a!a12
.

If the events are sufficiently frequent then an inverse pow
law in t is obtained. This type of behavior has been heu
tically invoked by several groups recently in the context
Lévy flights and SOC@10, 40#. Note that the negative bino
mial model exhibits inner and outer scales, where the av
age inter event period isa/R̄ and the correlation time is 1/G,
in addition to a power-law region.
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VI. SUMMARY AND CONCLUSIONS

This paper has examined random walks where the di
bution of individual steps comprising the walk is govern
by stable distributions but where the number of steps in
walk can fluctuate and be subject to clustering. Such an
novation to the Le´vy-flight literature is informed by its suc
cess in the context of optical scattering from random me
where step fluctuations model correlated phenomena, suc
small-scale modulation by larger scale structures. The mo
chosen for the step number fluctuations is the negat
binomial distribution, which is the steady state of a birt
death-immigration process. This has Poisson and Bo
Einstein ~geometric! number fluctuations as special case

and in general the Fano factor,Var(N)/N̄5N̄/a>1, usually
for the negative binomial class. Distributions for the distan
of the resultant of the random walk from the origin are o
tained, both in the limit when the average number of step
infinite, and also when it is finite. The tails of the distrib
tions exhibit a power law behavior that has the same cha
teristics as the underlying Le´vy distribution. This result is
true irrespective of the number of steps taken in the rand
walk. Clustering can lead to the resultant having qualitativ
different behavior from the underlying Le´vy properties that
describe the individual steps. When the product formed
the cluster parameter and the index of the Le´vy distribution
is less than or equal to unity, a different power law at sm
scales is introduced, whereas, if this product is greater t
unity, the density is finite at the origin. When the clus
parameter is infinite, the number of steps is uncorrelated
described by Poisson fluctuations, and in this case the l
distribution is exactly a Le´vy distribution, so that the Le´vy-
Gnedenko generalization of the central limit theorem appl
When the individual step lengths are Gaussian, theK distri-
bution is obtained.

Walks comprising a finite number of steps always have
inner scale, but a vestige of the inner power-law behavio
retained in an intermediate region ifag<1. Beyond this
region the distribution matches onto the Le´vy-like tail. The
size of the inner scale depends on an inverse power of
number of steps. The other noteworthy feature of these
tributions is thed function contribution at the origin. This
represents the finite probability for their being no steps in
random walk, and thereby remaining at the origin.

The convergence to the limit distribution is ultraslow.
random walk comprising, on average, 100 steps was sh
to differ substantially from the limiting form, these differ
ences occurring for small values ofx. Once again the form o
the tail for the distribution is insensitive to the number
steps.

The two parameter limit distributions derived in this pap
bear a striking resemblance to distributions obtained fr
cellular automata computer simulations that have been
ported to explain SOC behavior in experimental rice pil
Indeed, distributions obtained from the experimental rice p
of Ref. @9# show some semblance of a dual power-law b
havior, though the authors did not comment upon this. T
precise reason for this apparent similarity is unknown
present, chiefly because the correspondence between the
dom variable appearing in the respective works is uncle
Seeking the reason for any such correspondence requires
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ther detailed investigation and may, as a result, also expl
the power-law tails that are a feature of SOC systems
addition to those occurring at small scales. In addition to th
program of work, the present approach can be generali
further by considering the properties of anisotropic Le´vy ran-
dom walks with fluctuating steps. Such a generalization m
be of value to analyzing anomalous transport in systems w
broken spatial symmetry, such as confined magnetiz
plasma, among others.
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APPENDIX A

This appendix generalizes the results of Ref.@16# by for-
mulating the Tsallis entropy for ann-dimensional random
variable which is then varied subject to constraining th
renormalizedr th moment in order to find the distribution
function for a single step in ann-dimensional random walk.
The random variablex is an isotropicn vector of distance
x5uxu from the origin and with the remainingn21 polar
components distributed uniformly over the surface of a h
persphere. The Tsallis entropy is defined as@19#

Sq@p#5
1

~q21! S 12
1

s r /2 E „s r /2p~x!…qdxD , ~A1!

which is parametrized by the real numberq. Whenq,1, the
effect of Eq. ~A1! is to apply weight to those events fo
which x!1, while q.1 biases the eventsx@1. When q
51, Eq.~A1! reduces to the familiar integral of2p ln p. The
stationary values of this functional are to be found for whe
the PDFp(x) has unit normalization, and ther th moment, as
defined through itsq expectation value, is constrained. Th
r th moment is defined as

ns r5^xr&q5E xr
„s r /2p~x!…qdx

5VnE
0

`

xr 1n21
„s r /2p~x!…qdx ~A2!

with Vn52pn/2/G(n/2) being the surface area of an
n-dimensional unit hypersphere, andG(x) the G function
@18#. Here r .0 is any real number and the existence o
moments is ensured for a range of values ofq through using
the q expectation@Eq. ~A2!#, which effectively renormalizes
the divergent moments of the Le´vy distribution. Performing
a variation on Eq.~A1! with respect top determines the most
likely distribution contingent upon satisfying the applie
constraints, that is,

dFSq@p#1aS 12E p~x!dxD1b~12^xr&q!G50,
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wherea andb are Lagrange multipliers whose values provide the normalization and scaling ofx in the distribution, respec-
tively. The PDF’s that are obtained are a generalization of the Cauchy distribution@30#, and have qualitatively differen
behaviors depending upon whetherq is greater or less than unity, in accord with remarks made concerning the biasing
of the Tsallis entropy. Specifically,

p~x!55
Aq~n,r !xn21~12xr !1/~12q! for 2`,q,1, 0<x<1

r 12n/rxn21

VnG~n/r !sn exp~2xr /rs r !, q51, 0<x,`

Bq~n,r !xn21~11xr !21/~q21! for 1,q,11r /n, 0<x,`,

~A3!

with the normalizing functions defined by

Aq~n,r !5

rGS 11
1

12q
1

n

r D
VnGS 11

1

12qDGS n

r D x0
n

, Bq~n,r !5

rGS 1

q21D
VnGS 1

q-1
2

n

r DGS n

r D x0
n

.

The scale parameterx0 is related to the Lagrange multiplier throughx0
r 51/u12qub, which can be determined by substitutin

Eq. ~A3! into Eq. ~A2!:

x0
n~12q!1r5H rs~32q!r /2

u12qu S VnG„111/~12q!…G~n/r !

rG„111/~12q!1n/r … D q21

for 2`,q,1,

rs~32q!r /2

u12qu S VnG„1/~q21!2n/r …G~n/r !

rG„1/~q21!… D q21

for 1,q,11r /n.

~A4!
ed
er

e

is

s-

n

ing

-

ss-
For values ofq outside the range specified in Eq.~A3!, the
constraint on theq expectation of ther -th moment cannot be
satisfied. These results generalize those given in Ref.@16# to
n dimensions and to where a moment of arbitrary orderr is
constrained to be finite. Those moments of orderm,r will
be similarly constrained.

The characteristic functionCq(u) of the single step dis-
tributions~A3! enable the resultant of the addition ofN such
statistically identical random variables to be determin
Two cases require consideration depending upon whethq
is less than or greater than unity.

Case (a)2`,q<1. In this case it is convenient to writ
the characteristic function as

Cq~u!5
Aq~n,r !~2p!n/2xo

11n/2

un/221

3E
0

1

xn/2Jn/221~xxou!~12xr !1/~12q!dx.

Expanding the Bessel function for small values ofu gives

Cq~u!5
Aq~n,r !~2p!n/2xo

n

2n/221G~n/2!
E

0

1

xn21~12xr !1/~12q!

3S 12
G~n/2!

G~11n/2! S xxou

2 D 2

1••• Ddx

512
G„111/~12q!1n/r …G„~21n!/r …xo

2

2nG~n/r !G„111/~12q!1~n12!/r …
u21¯

'exp„2Lq~n,r !u2
…

.

to accuracyO(u2). Hence the characteristic function
asymptotic to that of a Gaussian, and the addition ofN sta-
tistically identical random variables will yield a characteri
tic function which is also Gaussian but with scaleNLq(n,r ).

Case (b)1,q<11r /n. This instance requires evaluatio
of

Cq~u!5
Bq~n,r !~2p!n/2

un/221

3E
0

`

xn/2Jn/221~x!@11„x/~xou!…r #21/~q21!dx,

and this integral has different asymptotic behavior depend
upon the size ofx/xou compared with unity. Whenx/xou
!1, the change of variablex→xu enables the Bessel func
tion to be expanded in powers ofu to yield

Cq~u!5
Bq~n,r !~2p!n/2

2n/221G~n/2!
E

0

`

xn21
„11~x/xo!r

…

21/~q21!

3X12
G~n/2!

G~11n/2! S xu

2 D 2

1¯Cdx

512
G„1/~q21!2~n12!/r …G„~21n!/r …xo

2

2nG~n/r !G„1/~q21!2n/r …
u2

1¯ for q,11r /~n12!

'exp„2Lq~n,r !u2
…

to O(u2). Once again the behavior is asymptotic to a Gau
ian random variable for values ofq in the range stated.
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Whenx/xou@1 the asymptotic behavior different and to leading order is:

Cq~u!511
Bq~n,r !~2p!n/2xo

r /q21

un2r /~q-1! E
0

`

xn/22r /~q21!Jn/221~x!dx1¯

512

GS 1

~q21! DGS n

2DGS 11
1

2
„n2r /~q21!…D

GS n

r DGS r

„2~q21!…DGS 11
1

q21
2

n

r D S uxo

2 D 2n1r /~q21!

1¯ for 11r /~n12!,q,11n/r

'exp„2Lq~n,r !ug
… where g52n1r /~q21!,2

which is the characteristic function of a symmetric Le´vy distribution. Thus when2`,q,11r /(n12), Cq(u)
;exp(2Lq u2) for small values ofu, and the statistical properties of a random walk are asymptotic to a Gaussian ra
process that leads to normal Brownian diffusion. Whenq falls in the range 11r /(n12),q,11r /n, Cq(u)
;exp(2Lq ug), with g52n1r /(q21), where 0,g,2 which defines a Le´vy distribution. In this case the random walk
asymptotic to ‘‘fractional’’ Brownian motion leading to anomalous diffusion. For values ofq.11r /n, the renormalizedr th
moment is not defined. The scaling functionLq is related to the diffusion coefficient through evaluation of the appropr
moment given by Eq.~A2!. In each of the regimes it is given by

Lq5

¦

GS 11
1

12q
1

n

r DGS 21n

r D
2nGS n

r DGS 11
1

12q
1

n12

r D xo
2, 2`,q,1

GS 1

q21
2

n12

r DGS 21n

r D
2nGS n

r DGS 1

q21
2

n

r D xo
2, 1,q,11r /~n12!

GS 1

q21DGX11
r

2 S n

r
2

1

q21D CGS n

2D
GS n

r DGS r

2~q21! DGS 11
1

q21
2

n

r D S xo

2 D g

, 11r /~n12!,q,11r /n,
im
f
t i
f

he

e

with xo given by Eqs.~A5!. The functionLq is continuous as
q passes through 1, but exhibits a discontinuity as the reg
defining the Le´vy-like behavior is broached. To the left o
the discontinuity the diffusion is Gaussian and to the righ
is anomalous. The coefficient is not defined for values oq
.11r /n, since theq expectation of ther th moment is di-
vergent in this regime.

APPENDIX B

This appendix outlines the analysis for obtaining t
asymptotic form of the distributions. First the form forx
@1 is obtained. Distribution~6! can be recognized as th
Hankel transform of the function

u~n21!/2~11ug/a!2a,

which may be expanded near the origin using
e

t

u~n21!/2 exp„ln~11ug/a!2a
…

5u~n21!/2X12ug1
~11a!

2
u2g

2
1

3S 11
3

2
a2

1

2
a2Du3g1¯C

5 (
m50

`

kmuam ,

defining the coefficientskm and indicesam , the first four
terms of which are given in Table I.

Substituting this expansion into Eq.~6! and writing n
5xu enables the PDF to be written as the expansion

p~x!;
212n/2

G~n/2!
x~n21!/2(

m50

`
km

xam11 E
0

`

nam11/2Jn/221~n!dn.

The first nonzero contribution occurs form51, which yields
Expression~10! given in the text.
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APPENDIX C

The following appendixes show how the inner scale as
ciated with the PDF’s describing random walks with a fin
average number of steps arise.

1. Cauchy distributed steps

Analysis of the integral in Eq.~11!,

2

pG~11a!
E

0

`

dt ta

3exp~2t !XS t

a„12exp~2N̄t/a!…
D 2

1x2C21

,

proceeds by dividing the range of integration into regio
where one of the terms comprising the denominator do
nates the other. The first region corresponds to valuest
that are sufficiently small for the denominator to be appro
mated byx2, i.e., when

t/@a„12exp~2N̄t/a!…#,x, ~C1!

in which case:

ptail~x!'
2

pG~11a!x2 E
0

x

dt ta exp~2t !.

Note that for large values ofx, this expression;2/px2,
which is precisely the form for the tail of the distributio
according to Eq.~8!. The apparent divergent behavior asx
→0 is prevented through condition~C1! which imposes a
smallest allowable value ofx;1/N̄ that defines an inne
scale within which the approximationptail(x) is invalid.
Hence

ptail~x!'
2H~x21/N̄!g~11a,x!

pG~11a!x2 ~C2!

whereg(a,b) is the incomplete gamma function@34#, and
H(x) is the Heaviside unit-step function@35#.

The second region corresponds to values oft for which
the first term in the denominator of the integrand of Eq.~11!

TABLE I. Coefficients of the asymptotic expansion for the ta
of the distributions.

m km am

0 1 ~n21!

2
1 21 ~n21!

2
1g

2 1

2
~11a!

~n21!

2
12g

3 21

3 S11
3a

2
2

a2

2 D ~n21!

2
13g
-

s
i-
f
-

exceeds the second. This occurs whenx,t,`, wherex is

chosen so thatt/„12exp(2N̄t/a)….x, and in this regime a
value of t can be found forany value ofx. Thus

pfront~x!'
2a2

pG~11a!
E

x

`

dt ta22

3exp~2t !„12exp~2N̄t/a!…2

5
2a

pG~a!
H G~a21,x!22S 11

N̄

a
D 12a

3GXa21,S 11
N̄

a
D xC1S 11

2N̄

a
D 12a

3GXa21,S 11
2N̄

a
D xCJ , ~C3!

where G(a,b) is the complementary incomplete gamm
function @34#. Expression~C3! is finite atx'0 and provides
an excellent approximation top(x) within the inner-scale
region, as may be seen from Fig. 2~b!. Equations~C2! and
~C3! together show that the PDF is approximately const
and given by Eq.~C3! for 0,x,1/N̄. For x;1/N̄ both Eqs.
~C2! and~C3! contribute to the value of the density. Indee
expanding the incomplete gamma functions and evalua
the resultant forx;1/N̄ shows that

pN̄~x!'pN̄~0!1
2

pG~21a!
xa211¯ for x.1/N̄,

indicating that beyond the inner scale region, the P
matches the power law associated with the limit distributio
For larger values ofx, contribution ~C3! which decreases
monotonically, is negligible and the PDF can be appro
mated by Eq.~C2!

2. Gaussian distributed steps

The analysis of Eq.~13!, which occurs for the caseg
52, has distributed part of the PDF.

pN̄~x!'
a1/2

p1/2G~a!
E

0

`

dt ta23/2

3exp~2t !„12exp~2N̄t/a!…3/2

3expS 2a„12exp~2N̄t/a!…x2

4t
D ,

and analysis proceeds in a similar fashion to that for E
~11!, except in this instance there are no separate regime
behavior. This is because the tail of the distribution is no
power law; rather it has an exponential behavior. The in
gral will be approximately constant if the argument of t
last exponential appearing in the integrand is small. T
occurs when

„12exp~2N̄t/a!…'N̄t/a,
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and so the inner scale within which the PDF is const
occurs for values ofx satisfyingx2!4/N̄. The distribution is
asymptotic to the tail of the distribution whenx2@4/N̄.

APPENDIX D

The asymptotic behavior that is used to characte
pN̄(0) in the limit N̄/a@1 is calculated by first writingn
5N̄t/a to give

pN̄~0!'
2G~111/g!a2a

pG~a!
~N̄!1/g2a

3E
0

`

na2121/g
„12exp~2n!…111/g

3 expS 2
an

N̄
D dn.

The integral is less than

E
0

`

na2121/g
„12exp~2n!…111/gdn, ~D1!
.

-

.

n

y,

d

D

B

t

e

which is finite fora.0 andg.0. Integral~D1! can be de-
composed into two regions, the first where 0<n<1, in
which

na2121/g
„12exp~2n!…111/g'naS 12

1

2
n1¯ D 111/g

,

and the second where 1<n,`, on which the integrand can
be approximated byna2121/g. The total integral can then b
estimated by

E
0

1

nadn1E
1

`

na2121/gdn,

which gives

pN̄~0!'
2gG~211/g!a2a

pG~a!~11a!~12ag!
~N̄!~12ag!/g,

as given in the text.
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